Ayu Masyita, Eris Septiana, Asep Bayu, Bustanussalam Bustanussalam, Jonathan A Panggabean, Firdayani Firdayani, Tutik Murniasih
{"title":"In silico study of bioactive compounds derived from Indonesian marine invertebrates as a novel antituberculosis agent.","authors":"Ayu Masyita, Eris Septiana, Asep Bayu, Bustanussalam Bustanussalam, Jonathan A Panggabean, Firdayani Firdayani, Tutik Murniasih","doi":"10.55730/1300-0144.5923","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Tuberculosis (TB) has become the world's deadliest disease. The lack of an effective therapeutic drug to treat it is one of the obstacle for doctors. Today, multidrug-resistant TB cases are increasing. Investigating these new drug should be given intensive and careful consideration. Marine invertebrates are valuable since they produce a large number of active compounds, and screening of these active compounds is very important.</p><p><strong>Materials and methods: </strong>Anti-TB screening of compounds derived from marine invertebrates was performed via the in silico method. Three-dimensional structures of pantothenate kinase (MtPanK type 1, PDB ID: 4BFT), <i>Mycobacterium tuberculosis</i> InhA (PDB ID: 2X23), protein kinase B (PDB ID: 5U94), and β-ketoacyl acyl carrier protein synthase I (MtKasA, PDB ID: 2WGE) were used as the protein targeted receptors.</p><p><strong>Results: </strong>The molecular docking analysis showed that the potential candidate compounds with the lowest docking score were 19-hydroxypsammaplysin Q, 19-hydroxypsammaplysin S, psammaplysin L, and psammaplysin K dimethoxy acetal. Several compounds, such as molamide C and the manzamine group, are also potential anti-TB compounds.</p><p><strong>Conclusion: </strong>This study showed that psammaplysin groups have potential as anti-TB compounds. Further laboratory experiments should be done to confirm the in silico data.</p>","PeriodicalId":23361,"journal":{"name":"Turkish Journal of Medical Sciences","volume":"54 6","pages":"1399-1408"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.55730/1300-0144.5923","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aim: Tuberculosis (TB) has become the world's deadliest disease. The lack of an effective therapeutic drug to treat it is one of the obstacle for doctors. Today, multidrug-resistant TB cases are increasing. Investigating these new drug should be given intensive and careful consideration. Marine invertebrates are valuable since they produce a large number of active compounds, and screening of these active compounds is very important.
Materials and methods: Anti-TB screening of compounds derived from marine invertebrates was performed via the in silico method. Three-dimensional structures of pantothenate kinase (MtPanK type 1, PDB ID: 4BFT), Mycobacterium tuberculosis InhA (PDB ID: 2X23), protein kinase B (PDB ID: 5U94), and β-ketoacyl acyl carrier protein synthase I (MtKasA, PDB ID: 2WGE) were used as the protein targeted receptors.
Results: The molecular docking analysis showed that the potential candidate compounds with the lowest docking score were 19-hydroxypsammaplysin Q, 19-hydroxypsammaplysin S, psammaplysin L, and psammaplysin K dimethoxy acetal. Several compounds, such as molamide C and the manzamine group, are also potential anti-TB compounds.
Conclusion: This study showed that psammaplysin groups have potential as anti-TB compounds. Further laboratory experiments should be done to confirm the in silico data.
期刊介绍:
Turkish Journal of Medical sciences is a peer-reviewed comprehensive resource that provides critical up-to-date information on the broad spectrum of general medical sciences. The Journal intended to publish original medical scientific papers regarding the priority based on the prominence, significance, and timeliness of the findings. However since the audience of the Journal is not limited to any subspeciality in a wide variety of medical disciplines, the papers focusing on the technical details of a given medical subspeciality may not be evaluated for publication.