Eva Krämer, Florian Koller, Jonas Suni, Adrian T LaMoury, Adrian Pöppelwerth, Georg Glebe, Tara Mohammed-Amin, Savvas Raptis, Laura Vuorinen, Stefan Weiss, Niki Xirogiannopoulou, Martin Archer, Xóchitl Blanco-Cano, Herbert Gunell, Heli Hietala, Tomas Karlsson, Ferdinand Plaschke, Luis Preisser, Owen Roberts, Cyril Simon Wedlund, Manuela Temmer, Zoltán Vörös
{"title":"Jets Downstream of Collisionless Shocks: Recent Discoveries and Challenges.","authors":"Eva Krämer, Florian Koller, Jonas Suni, Adrian T LaMoury, Adrian Pöppelwerth, Georg Glebe, Tara Mohammed-Amin, Savvas Raptis, Laura Vuorinen, Stefan Weiss, Niki Xirogiannopoulou, Martin Archer, Xóchitl Blanco-Cano, Herbert Gunell, Heli Hietala, Tomas Karlsson, Ferdinand Plaschke, Luis Preisser, Owen Roberts, Cyril Simon Wedlund, Manuela Temmer, Zoltán Vörös","doi":"10.1007/s11214-024-01129-3","DOIUrl":null,"url":null,"abstract":"<p><p>Plasma flows with enhanced dynamic pressure, known as magnetosheath jets, are often found downstream of collisionless shocks. As they propagate through the magnetosheath, they interact with the surrounding plasma, shaping its properties, and potentially becoming geoeffective upon reaching the magnetopause. In recent years (since 2016), new research has produced vital results that have significantly enhanced our understanding on many aspects of jets. In this review, we summarise and discuss these findings. Spacecraft and ground-based observations, as well as global and local simulations, have contributed greatly to our understanding of the causes and effects of magnetosheath jets. First, we discuss recent findings on jet occurrence and formation, including in other planetary environments. New insights into jet properties and evolution are then examined using observations and simulations. Finally, we review the impact of jets upon interaction with the magnetopause and subsequent consequences for the magnetosphere-ionosphere system. We conclude with an outlook and assessment on future challenges. This includes an overview on future space missions that may prove crucial in tackling the outstanding open questions on jets in the terrestrial magnetosheath as well as other planetary and shock environments.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"4"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-024-01129-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma flows with enhanced dynamic pressure, known as magnetosheath jets, are often found downstream of collisionless shocks. As they propagate through the magnetosheath, they interact with the surrounding plasma, shaping its properties, and potentially becoming geoeffective upon reaching the magnetopause. In recent years (since 2016), new research has produced vital results that have significantly enhanced our understanding on many aspects of jets. In this review, we summarise and discuss these findings. Spacecraft and ground-based observations, as well as global and local simulations, have contributed greatly to our understanding of the causes and effects of magnetosheath jets. First, we discuss recent findings on jet occurrence and formation, including in other planetary environments. New insights into jet properties and evolution are then examined using observations and simulations. Finally, we review the impact of jets upon interaction with the magnetopause and subsequent consequences for the magnetosphere-ionosphere system. We conclude with an outlook and assessment on future challenges. This includes an overview on future space missions that may prove crucial in tackling the outstanding open questions on jets in the terrestrial magnetosheath as well as other planetary and shock environments.
期刊介绍:
Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter.
Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.