Impaired Biofilm Development on Graphene Oxide-Metal Nanoparticle Composites.

IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY
Nanotechnology, Science and Applications Pub Date : 2024-12-24 eCollection Date: 2024-01-01 DOI:10.2147/NSA.S485841
Agata Lange, Marta Kutwin, Katarzyna Zawadzka, Agnieszka Ostrowska, Barbara Strojny-Cieślak, Barbara Nasiłowska, Aneta Bombalska, Sławomir Jaworski
{"title":"Impaired Biofilm Development on Graphene Oxide-Metal Nanoparticle Composites.","authors":"Agata Lange, Marta Kutwin, Katarzyna Zawadzka, Agnieszka Ostrowska, Barbara Strojny-Cieślak, Barbara Nasiłowska, Aneta Bombalska, Sławomir Jaworski","doi":"10.2147/NSA.S485841","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Biofilms are one of the main threats related to bacteria. Owing to their complex structure, in which bacteria are embedded in the extracellular matrix, they are extremely challenging to eradicate, especially since they can inhabit both biotic and abiotic surfaces. This study aimed to create an effective antibiofilm nanofilm based on graphene oxide-metal nanoparticles (GOM-NPs).</p><p><strong>Methods: </strong>To create nanofilms, physicochemical analysis was performed, including zeta potential (Zp) (and the nanocomposites stability in time) and size distribution measurements, scanning transmission electron microscopy (STEM), energy dispersive X-ray analysis (EDX), and atomic force microscopy (AFM) of the nanofilm surfaces. During biological analysis, reactive oxygen species (ROS) and antioxidant capacity were measured in planktonic cells treated with the nanocomposites. Thereafter, biofilm formation was checked via crystal violet staining, biofilm thickness was assessed by confocal microscopy using double fluorescent staining, and biofilm structure was analyzed by scanning electron microscopy.</p><p><strong>Results: </strong>The results showed that two of the three nanocomposites were effective in reducing biofilm formation (GOAg and GOZnO), although the nanofilms were characterized by the roughest surface, indicating that high surface roughness is unfavorable for biofilm formation by the tested bacterial species (<i>Staphylococcus aureus</i> (ATCC 25923), <i>Salmonella enterica</i> (ATCC 13076), <i>Pseudomonas aeruginosa</i> (ATCC 27853)).</p><p><strong>Conclusion: </strong>The performed analysis indicated that graphene oxide may be a platform for metal nanoparticles that enhances their properties (eg colloidal stability, which is maintained over time). Nanocomposites based on graphene oxide with silver nanoparticles and other types of nanocomposites with zinc oxide were effective against biofilms, contributing to changes throughout the biofilm structure, causing a significant reduction in the thickness of the structure, and affecting cell distribution. A nanocomposite consisting of graphene oxide with copper nanoparticles inhibited the biofilm, but to a lesser extent.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"303-320"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S485841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Biofilms are one of the main threats related to bacteria. Owing to their complex structure, in which bacteria are embedded in the extracellular matrix, they are extremely challenging to eradicate, especially since they can inhabit both biotic and abiotic surfaces. This study aimed to create an effective antibiofilm nanofilm based on graphene oxide-metal nanoparticles (GOM-NPs).

Methods: To create nanofilms, physicochemical analysis was performed, including zeta potential (Zp) (and the nanocomposites stability in time) and size distribution measurements, scanning transmission electron microscopy (STEM), energy dispersive X-ray analysis (EDX), and atomic force microscopy (AFM) of the nanofilm surfaces. During biological analysis, reactive oxygen species (ROS) and antioxidant capacity were measured in planktonic cells treated with the nanocomposites. Thereafter, biofilm formation was checked via crystal violet staining, biofilm thickness was assessed by confocal microscopy using double fluorescent staining, and biofilm structure was analyzed by scanning electron microscopy.

Results: The results showed that two of the three nanocomposites were effective in reducing biofilm formation (GOAg and GOZnO), although the nanofilms were characterized by the roughest surface, indicating that high surface roughness is unfavorable for biofilm formation by the tested bacterial species (Staphylococcus aureus (ATCC 25923), Salmonella enterica (ATCC 13076), Pseudomonas aeruginosa (ATCC 27853)).

Conclusion: The performed analysis indicated that graphene oxide may be a platform for metal nanoparticles that enhances their properties (eg colloidal stability, which is maintained over time). Nanocomposites based on graphene oxide with silver nanoparticles and other types of nanocomposites with zinc oxide were effective against biofilms, contributing to changes throughout the biofilm structure, causing a significant reduction in the thickness of the structure, and affecting cell distribution. A nanocomposite consisting of graphene oxide with copper nanoparticles inhibited the biofilm, but to a lesser extent.

氧化石墨烯-金属纳米颗粒复合材料生物膜发育受损研究。
目的:生物膜是与细菌有关的主要威胁之一。由于其复杂的结构,其中细菌嵌入细胞外基质,它们极具挑战性,特别是因为它们可以栖息在生物和非生物表面。本研究旨在制备一种基于氧化石墨烯-金属纳米颗粒(GOM-NPs)的有效抗菌纳米膜。方法:制备纳米膜,对纳米膜表面进行物理化学分析,包括zeta电位(Zp)(以及纳米复合材料的时间稳定性)和尺寸分布测量,扫描透射电子显微镜(STEM),能量色散x射线分析(EDX)和原子力显微镜(AFM)。在生物学分析中,测定了纳米复合材料处理过的浮游细胞的活性氧(ROS)和抗氧化能力。结晶紫染色检测生物膜形成,双荧光染色共聚焦显微镜检测生物膜厚度,扫描电镜分析生物膜结构。结果:三种纳米复合材料中的两种(GOAg和GOZnO)都能有效地减少生物膜的形成,尽管纳米膜的表面最粗糙,这表明高表面粗糙度不利于被测试细菌(金黄色葡萄球菌(ATCC 25923)、肠炎沙门氏菌(ATCC 13076)、铜绿假单胞菌(ATCC 27853))形成生物膜。结论:所进行的分析表明,氧化石墨烯可能是金属纳米颗粒的平台,可以增强其性能(例如,随着时间的推移保持胶体稳定性)。基于氧化石墨烯与纳米银的纳米复合材料和其他类型的纳米复合材料与氧化锌的纳米复合材料对生物膜有效,导致整个生物膜结构的变化,导致结构厚度的显着降低,并影响细胞分布。由氧化石墨烯和铜纳米颗粒组成的纳米复合材料抑制了生物膜,但程度较轻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology, Science and Applications
Nanotechnology, Science and Applications NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
11.70
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信