Tracking SARS-CoV-2 variants in wastewater in San Pedro de la Paz, Chile.

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Journal of water and health Pub Date : 2024-12-01 Epub Date: 2024-11-28 DOI:10.2166/wh.2024.284
Andressa S Reis, Christian Castro, Paulina Assmann, Katherine Salgado, M Estrella Armijo, María José Navarrete, Cesar Echeverria, Aldo Gaggero, Carlos Farkas, Matias I Hepp
{"title":"Tracking SARS-CoV-2 variants in wastewater in San Pedro de la Paz, Chile.","authors":"Andressa S Reis, Christian Castro, Paulina Assmann, Katherine Salgado, M Estrella Armijo, María José Navarrete, Cesar Echeverria, Aldo Gaggero, Carlos Farkas, Matias I Hepp","doi":"10.2166/wh.2024.284","DOIUrl":null,"url":null,"abstract":"<p><p>Studies have shown the presence of SARS-CoV-2 in the stool of both symptomatic and asymptomatic COVID-19 patients, enabling wastewater-based surveillance (WBS) to complement clinical monitoring. The emergence of variants can enhance viral transmissibility, highlighting the need for ongoing surveillance to detect and control infectious diseases. This study aimed to detect SARS-CoV-2 variants in wastewater from a treatment plant in San Pedro de la Paz, Chile, between January and November 2021. Wastewater samples were concentrated using the polyethylene glycol method, and RT-qPCR assays were performed to analyze SARS-CoV-2 and its variants (Alpha, Beta, Gamma, Lambda, and Delta), with results compared to Illumina amplicon sequencing. The concentration method achieved about 11% viral recovery. The detection of viruses and variants in wastewater proved sensitive and consistent with clinical data, providing additional surveillance insights. Notably, Lambda and Delta variants were the most frequently detected during the second and third infection waves, with some variants identified in wastewater before the first confirmed clinical cases. However, Illumina sequencing lacked sufficient genome coverage, suggesting the need for better sequencing methods for this matrix. This study demonstrates that WBS is a rapid, cost-effective tool for detecting SARS-CoV-2 and its mutations, particularly useful during overwhelming clinical situations or when cost is prohibitively high.</p>","PeriodicalId":17436,"journal":{"name":"Journal of water and health","volume":"22 12","pages":"2398-2413"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water and health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wh.2024.284","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Studies have shown the presence of SARS-CoV-2 in the stool of both symptomatic and asymptomatic COVID-19 patients, enabling wastewater-based surveillance (WBS) to complement clinical monitoring. The emergence of variants can enhance viral transmissibility, highlighting the need for ongoing surveillance to detect and control infectious diseases. This study aimed to detect SARS-CoV-2 variants in wastewater from a treatment plant in San Pedro de la Paz, Chile, between January and November 2021. Wastewater samples were concentrated using the polyethylene glycol method, and RT-qPCR assays were performed to analyze SARS-CoV-2 and its variants (Alpha, Beta, Gamma, Lambda, and Delta), with results compared to Illumina amplicon sequencing. The concentration method achieved about 11% viral recovery. The detection of viruses and variants in wastewater proved sensitive and consistent with clinical data, providing additional surveillance insights. Notably, Lambda and Delta variants were the most frequently detected during the second and third infection waves, with some variants identified in wastewater before the first confirmed clinical cases. However, Illumina sequencing lacked sufficient genome coverage, suggesting the need for better sequencing methods for this matrix. This study demonstrates that WBS is a rapid, cost-effective tool for detecting SARS-CoV-2 and its mutations, particularly useful during overwhelming clinical situations or when cost is prohibitively high.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of water and health
Journal of water and health 环境科学-环境科学
CiteScore
3.60
自引率
8.70%
发文量
110
审稿时长
18-36 weeks
期刊介绍: Journal of Water and Health is a peer-reviewed journal devoted to the dissemination of information on the health implications and control of waterborne microorganisms and chemical substances in the broadest sense for developing and developed countries worldwide. This is to include microbial toxins, chemical quality and the aesthetic qualities of water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信