Máté Sándor, David S Vitale, Zoltán Attila Nagy, Sherif Y Ibrahim, Maisam Abu-El-Haija, Maria Lazou, Sandor Vajda, Miklós Sahin-Tóth
{"title":"Misfolding PRSS1 variant p.Ala61Val in a case of suspected intrauterine pancreatitis.","authors":"Máté Sándor, David S Vitale, Zoltán Attila Nagy, Sherif Y Ibrahim, Maisam Abu-El-Haija, Maria Lazou, Sandor Vajda, Miklós Sahin-Tóth","doi":"10.1016/j.pan.2024.12.013","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Genetic variants in PRSS1 encoding human cationic trypsinogen are associated with hereditary pancreatitis. The clinically frequent variants exert their pathogenic effect by increasing intrapancreatic trypsin activity, while a distinct subset of variants causes disease via mutation-induced trypsinogen misfolding and endoplasmic reticulum (ER) stress. Here, we report a novel misfolding PRSS1 variant.</p><p><strong>Methods: </strong>We used next-generation and Sanger sequencing to screen the index patient. We performed structural modeling and analyzed the functional effects of the PRSS1 variant.</p><p><strong>Results: </strong>A heterozygous c.182C>T (p.Ala61Val) PRSS1 variant was identified in a case of suspected intrauterine pancreatitis with pseudocyst formation. Recombinant p.Ala61Val trypsinogen autoactivated to lower trypsin levels, but activity of p.Ala61Val trypsin was similar to wild type. In cell culture experiments, the variant exhibited reduced secretion and intracellular retention. Cells expressing the p.Ala61Val variant showed signs of ER stress, as judged by elevated mRNA expression of Hspa5 encoding the chaperone BiP, and increased mRNA splicing of the transcription factor XBP1.</p><p><strong>Conclusions: </strong>Taken together, the observations expand the repertoire of misfolding PRSS1 variants and highlight the need for functional analysis to identify this rare form of genetic etiology.</p>","PeriodicalId":19976,"journal":{"name":"Pancreatology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pancreatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.pan.2024.12.013","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Genetic variants in PRSS1 encoding human cationic trypsinogen are associated with hereditary pancreatitis. The clinically frequent variants exert their pathogenic effect by increasing intrapancreatic trypsin activity, while a distinct subset of variants causes disease via mutation-induced trypsinogen misfolding and endoplasmic reticulum (ER) stress. Here, we report a novel misfolding PRSS1 variant.
Methods: We used next-generation and Sanger sequencing to screen the index patient. We performed structural modeling and analyzed the functional effects of the PRSS1 variant.
Results: A heterozygous c.182C>T (p.Ala61Val) PRSS1 variant was identified in a case of suspected intrauterine pancreatitis with pseudocyst formation. Recombinant p.Ala61Val trypsinogen autoactivated to lower trypsin levels, but activity of p.Ala61Val trypsin was similar to wild type. In cell culture experiments, the variant exhibited reduced secretion and intracellular retention. Cells expressing the p.Ala61Val variant showed signs of ER stress, as judged by elevated mRNA expression of Hspa5 encoding the chaperone BiP, and increased mRNA splicing of the transcription factor XBP1.
Conclusions: Taken together, the observations expand the repertoire of misfolding PRSS1 variants and highlight the need for functional analysis to identify this rare form of genetic etiology.
期刊介绍:
Pancreatology is the official journal of the International Association of Pancreatology (IAP), the European Pancreatic Club (EPC) and several national societies and study groups around the world. Dedicated to the understanding and treatment of exocrine as well as endocrine pancreatic disease, this multidisciplinary periodical publishes original basic, translational and clinical pancreatic research from a range of fields including gastroenterology, oncology, surgery, pharmacology, cellular and molecular biology as well as endocrinology, immunology and epidemiology. Readers can expect to gain new insights into pancreatic physiology and into the pathogenesis, diagnosis, therapeutic approaches and prognosis of pancreatic diseases. The journal features original articles, case reports, consensus guidelines and topical, cutting edge reviews, thus representing a source of valuable, novel information for clinical and basic researchers alike.