Effect of Virtual Reality-Based Training on Upper Limb Dysfunction during Post-Stroke Rehabilitation: A Meta-Analysis Combined with Meta-Regression.

IF 2.5 4区 医学 Q3 NEUROSCIENCES
Jiali Zhang, Xin Jiang, Qiuzhu Xu, Enli Cai, Hao Ding
{"title":"Effect of Virtual Reality-Based Training on Upper Limb Dysfunction during Post-Stroke Rehabilitation: A Meta-Analysis Combined with Meta-Regression.","authors":"Jiali Zhang, Xin Jiang, Qiuzhu Xu, Enli Cai, Hao Ding","doi":"10.31083/j.jin2312225","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recently, there has been a surge in virtual reality (VR)-based training for upper limb (UL) rehabilitation, which has yielded mixed results. Therefore, we aimed to explore the effects of conventional therapy combined with VR-based training on UL dysfunction during post-stroke rehabilitation.</p><p><strong>Methods: </strong>Studies published in English before May 2023 were retrieved from PubMed, Embase, and the Cochrane Library. We also included randomized controlled trials that compared the use of conventional therapy and VR-based training with conventional therapy alone in post-stroke rehabilitation. The meta-analysis was performed using Review Manager Software (version 5.3; The Nordic Cochrane Centre, The Cochrane Collaboration; Copenhagen, Denmark) and Stata/MP 17.0 (StataCorp, LLC, College Station, TX, USA). Univariate and multivariate meta-regression analyses were performed to investigate the effects of stroke duration, VR characteristics, and type of conventional therapy on VR-based training.</p><p><strong>Results: </strong>In total, 27 randomized controlled trials were included, which enrolled 1354 patients. Our results showed that conventional therapy plus VR-based training is better than conventional therapy alone in UL motor impairment recovery measured using Fugl-Meyer Upper Extremity (standardized mean difference [SMD] = 0.32, 95% confidence interval [CI]: 0.07-0.57, Z = 2.52, <i>p</i> = 0.01). Meta-regression showed that stroke duration had independent effects on Fugl-Meyer Upper Extremity scores of VR-based training in rehabilitation (<i>p</i> = 0.041). Furthermore, in subgroup analysis based on stroke duration, stroke duration >6 months was statistically significant (SMD = 0.20, 95% CI: 0.01-0.39, Z = 2.06, <i>p</i> = 0.04). No relevant publication bias (<i>p</i> = 0.1303), and no significant difference in activity limitation assessed using the Box-Block Test (mean difference [MD] = 2.79, 95% CI: -0.63-6.20, Z = 1.60, <i>p</i> = 0.11) was observed. Regarding the functional independence measured using the Functional Independence Measure scale, studies presented no significant difference between the experimental and control groups (MD = 1.15, 95% CI: -1.84-4.14, Z = 0.76, <i>p</i> = 0.45).</p><p><strong>Conclusions: </strong>Conventional therapy plus VR-based training is superior to conventional therapy alone in promoting the recovery of UL motor function after stroke. Therefore, VR-based training may be a potential option for improving UL motor function. The study was registered on PROSPERO (https://www.crd.york.ac.uk/prospero/), registration number: CRD42023472709.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 12","pages":"225"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.jin2312225","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recently, there has been a surge in virtual reality (VR)-based training for upper limb (UL) rehabilitation, which has yielded mixed results. Therefore, we aimed to explore the effects of conventional therapy combined with VR-based training on UL dysfunction during post-stroke rehabilitation.

Methods: Studies published in English before May 2023 were retrieved from PubMed, Embase, and the Cochrane Library. We also included randomized controlled trials that compared the use of conventional therapy and VR-based training with conventional therapy alone in post-stroke rehabilitation. The meta-analysis was performed using Review Manager Software (version 5.3; The Nordic Cochrane Centre, The Cochrane Collaboration; Copenhagen, Denmark) and Stata/MP 17.0 (StataCorp, LLC, College Station, TX, USA). Univariate and multivariate meta-regression analyses were performed to investigate the effects of stroke duration, VR characteristics, and type of conventional therapy on VR-based training.

Results: In total, 27 randomized controlled trials were included, which enrolled 1354 patients. Our results showed that conventional therapy plus VR-based training is better than conventional therapy alone in UL motor impairment recovery measured using Fugl-Meyer Upper Extremity (standardized mean difference [SMD] = 0.32, 95% confidence interval [CI]: 0.07-0.57, Z = 2.52, p = 0.01). Meta-regression showed that stroke duration had independent effects on Fugl-Meyer Upper Extremity scores of VR-based training in rehabilitation (p = 0.041). Furthermore, in subgroup analysis based on stroke duration, stroke duration >6 months was statistically significant (SMD = 0.20, 95% CI: 0.01-0.39, Z = 2.06, p = 0.04). No relevant publication bias (p = 0.1303), and no significant difference in activity limitation assessed using the Box-Block Test (mean difference [MD] = 2.79, 95% CI: -0.63-6.20, Z = 1.60, p = 0.11) was observed. Regarding the functional independence measured using the Functional Independence Measure scale, studies presented no significant difference between the experimental and control groups (MD = 1.15, 95% CI: -1.84-4.14, Z = 0.76, p = 0.45).

Conclusions: Conventional therapy plus VR-based training is superior to conventional therapy alone in promoting the recovery of UL motor function after stroke. Therefore, VR-based training may be a potential option for improving UL motor function. The study was registered on PROSPERO (https://www.crd.york.ac.uk/prospero/), registration number: CRD42023472709.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
173
审稿时长
2 months
期刊介绍: JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信