Prediction of postoperative stroke in patients experienced coronary artery bypass grafting surgery: a machine learning approach.

IF 2.8 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Frontiers in Cardiovascular Medicine Pub Date : 2024-12-13 eCollection Date: 2024-01-01 DOI:10.3389/fcvm.2024.1448740
Shiqi Chen, Kan Wang, Chen Wang, Zhengfeng Fan, Lizhao Yan, Yixuan Wang, Fayuan Liu, JiaWei Shi, QianNan Guo, NianGuo Dong
{"title":"Prediction of postoperative stroke in patients experienced coronary artery bypass grafting surgery: a machine learning approach.","authors":"Shiqi Chen, Kan Wang, Chen Wang, Zhengfeng Fan, Lizhao Yan, Yixuan Wang, Fayuan Liu, JiaWei Shi, QianNan Guo, NianGuo Dong","doi":"10.3389/fcvm.2024.1448740","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Coronary artery bypass grafting (CABG) surgery has been a widely accepted method for treating coronary artery disease. However, its postoperative complications can have a significant effect on long-term patient outcomes. A retrospective study was conducted to identify before and after surgery that contribute to postoperative stroke in patients undergoing CABG, and to develop predictive models and recommendations for single-factor thresholds.</p><p><strong>Materials and methods: </strong>We utilized data from 1,200 patients who undergone CABG surgery at the Wuhan Union Hospital from 2016 to 2022, which was divided into a training group (<i>n</i> = 841) and a test group (<i>n</i> = 359). 33 preoperative clinical features and 4 postoperative complications were collected in each group. LASSO is a regression analysis method that performs both variable selection and regularization to enhance model prediction accuracy and interpretability. The LASSO method was used to verify the collected features, and the SHAP value was used to explain the machine model prediction. Six machine learning models were employed, and the performance of the models was evaluated by area under the curve (AUC) and decision curve analysis (DCA). AUC, or area under the receiver operating characteristic curve, quantifies the ability of a model to distinguish between positive and negative outcomes. Finally, this study provided a convenient online tool for predicting CABG patient post-operative stroke.</p><p><strong>Results: </strong>The study included a combined total of 1,200 patients in both the development and validation cohorts. The average age of the participants in the study was 60.26 years. 910 (75.8%) of the patients were men, and 153 (12.8%) patients were in NYHA class III and IV. Subsequently, LASSO model was used to identify 11 important features, which were mechanical ventilation time, preoperative creatinine value, preoperative renal insufficiency, diabetes, the use of an intra-aortic balloon pump (IABP), age, Cardiopulmonary bypass time, Aortic cross-clamp time, Chronic Obstructive Pulmonary Disease (COPD) history, preoperative arrhythmia and Renal artery stenosis in descending order of importance according to the SHAP value. According to the analysis of receiver operating characteristic (ROC) curve, AUC, DCA and sensitivity, all seven machine learning models perform well and random forest (RF) machine model was found to perform best (AUC-ROC = 0.9008, Accuracy: 0.9008, Precision: 0.6905; Recall: 0.7532, F1: 0.7205). Finally, an online tool was established to predict the occurrence of stroke after CABG based on the 11 selected features.</p><p><strong>Conclusion: </strong>Mechanical ventilation time, preoperative creatinine value, preoperative renal insufficiency, diabetes, the use of an intra-aortic balloon pump (IABP), age, Cardiopulmonary bypass time, Aortic cross-clamp time, Chronic Obstructive Pulmonary Disease (COPD) history, preoperative arrhythmia and Renal artery stenosis in the preoperative and intraoperative period was associated with significant postoperative stroke risk, and these factors can be identified and modeled to assist in implementing proactive measures to protect the brain in high-risk patients after surgery.</p>","PeriodicalId":12414,"journal":{"name":"Frontiers in Cardiovascular Medicine","volume":"11 ","pages":"1448740"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671478/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cardiovascular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcvm.2024.1448740","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Coronary artery bypass grafting (CABG) surgery has been a widely accepted method for treating coronary artery disease. However, its postoperative complications can have a significant effect on long-term patient outcomes. A retrospective study was conducted to identify before and after surgery that contribute to postoperative stroke in patients undergoing CABG, and to develop predictive models and recommendations for single-factor thresholds.

Materials and methods: We utilized data from 1,200 patients who undergone CABG surgery at the Wuhan Union Hospital from 2016 to 2022, which was divided into a training group (n = 841) and a test group (n = 359). 33 preoperative clinical features and 4 postoperative complications were collected in each group. LASSO is a regression analysis method that performs both variable selection and regularization to enhance model prediction accuracy and interpretability. The LASSO method was used to verify the collected features, and the SHAP value was used to explain the machine model prediction. Six machine learning models were employed, and the performance of the models was evaluated by area under the curve (AUC) and decision curve analysis (DCA). AUC, or area under the receiver operating characteristic curve, quantifies the ability of a model to distinguish between positive and negative outcomes. Finally, this study provided a convenient online tool for predicting CABG patient post-operative stroke.

Results: The study included a combined total of 1,200 patients in both the development and validation cohorts. The average age of the participants in the study was 60.26 years. 910 (75.8%) of the patients were men, and 153 (12.8%) patients were in NYHA class III and IV. Subsequently, LASSO model was used to identify 11 important features, which were mechanical ventilation time, preoperative creatinine value, preoperative renal insufficiency, diabetes, the use of an intra-aortic balloon pump (IABP), age, Cardiopulmonary bypass time, Aortic cross-clamp time, Chronic Obstructive Pulmonary Disease (COPD) history, preoperative arrhythmia and Renal artery stenosis in descending order of importance according to the SHAP value. According to the analysis of receiver operating characteristic (ROC) curve, AUC, DCA and sensitivity, all seven machine learning models perform well and random forest (RF) machine model was found to perform best (AUC-ROC = 0.9008, Accuracy: 0.9008, Precision: 0.6905; Recall: 0.7532, F1: 0.7205). Finally, an online tool was established to predict the occurrence of stroke after CABG based on the 11 selected features.

Conclusion: Mechanical ventilation time, preoperative creatinine value, preoperative renal insufficiency, diabetes, the use of an intra-aortic balloon pump (IABP), age, Cardiopulmonary bypass time, Aortic cross-clamp time, Chronic Obstructive Pulmonary Disease (COPD) history, preoperative arrhythmia and Renal artery stenosis in the preoperative and intraoperative period was associated with significant postoperative stroke risk, and these factors can be identified and modeled to assist in implementing proactive measures to protect the brain in high-risk patients after surgery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Cardiovascular Medicine
Frontiers in Cardiovascular Medicine Medicine-Cardiology and Cardiovascular Medicine
CiteScore
3.80
自引率
11.10%
发文量
3529
审稿时长
14 weeks
期刊介绍: Frontiers? Which frontiers? Where exactly are the frontiers of cardiovascular medicine? And who should be defining these frontiers? At Frontiers in Cardiovascular Medicine we believe it is worth being curious to foresee and explore beyond the current frontiers. In other words, we would like, through the articles published by our community journal Frontiers in Cardiovascular Medicine, to anticipate the future of cardiovascular medicine, and thus better prevent cardiovascular disorders and improve therapeutic options and outcomes of our patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信