A bifunctional endolytic alginate lyase with two different lyase catalytic domains from Vibrio sp. H204.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2024-12-13 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1509599
Chune Peng, Qingbin Wang, Wei Xu, Xinkun Wang, Qianqian Zheng, Xiaohui Liang, Xiaodan Dong, Fuchuan Li, Lizeng Peng
{"title":"A bifunctional endolytic alginate lyase with two different lyase catalytic domains from <i>Vibrio</i> sp. H204.","authors":"Chune Peng, Qingbin Wang, Wei Xu, Xinkun Wang, Qianqian Zheng, Xiaohui Liang, Xiaodan Dong, Fuchuan Li, Lizeng Peng","doi":"10.3389/fmicb.2024.1509599","DOIUrl":null,"url":null,"abstract":"<p><p>Alginate lyases can fully degrade alginate into various size-defined unsaturated oligosaccharide products by <i>β</i>-elimination. Here, we identified the bifunctional endolytic alginate lyase Aly35 from the marine bacterium <i>Vibrio</i> sp. Strain H204. The enzyme Aly35 is classified into the polysaccharide lyase 7 superfamily and contains two alginate lyase catalytic domains. The relationship and function of the two lyase domains are not well known. Thus, the full-length recombinant enzyme and its truncated proteins Aly35-CD1 (catalytic domain 1), Aly35-CD2 (catalytic domain 2 domain) were constructed. The three enzymes showed similar biochemical characteristics and exhibited temperature and pH stability. Further research showed that Aly35 and Aly35-CD2 can efficiently degrade alginate, polymannuronate (PM) and polyguluronate (PG) into a series of unsaturated oligosaccharides, while Aly35-CD1 exhibits greater PM-degrading activity than that of Aly35-CD2 but can not degraded PG efficiently. The results suggest that the domain (Trp<sup>295</sup>-His<sup>582</sup>) is critical for PG-degrading activity, the domain has (Leu<sup>53</sup>-Lys<sup>286</sup>) higher PM-degrading activity, both catalytic domains together confer increased alginate (including M-blocks and G blocks)-degrading activity. The enzyme Aly35 and its truncations Aly35-CD1 and Aly35-CD2 will be useful tools for structural analyses and for preparing bioactive oligosaccharides, especially Aly35-CD1 can be used to prepare G unit-rich oligosaccharides from alginate.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1509599"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1509599","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alginate lyases can fully degrade alginate into various size-defined unsaturated oligosaccharide products by β-elimination. Here, we identified the bifunctional endolytic alginate lyase Aly35 from the marine bacterium Vibrio sp. Strain H204. The enzyme Aly35 is classified into the polysaccharide lyase 7 superfamily and contains two alginate lyase catalytic domains. The relationship and function of the two lyase domains are not well known. Thus, the full-length recombinant enzyme and its truncated proteins Aly35-CD1 (catalytic domain 1), Aly35-CD2 (catalytic domain 2 domain) were constructed. The three enzymes showed similar biochemical characteristics and exhibited temperature and pH stability. Further research showed that Aly35 and Aly35-CD2 can efficiently degrade alginate, polymannuronate (PM) and polyguluronate (PG) into a series of unsaturated oligosaccharides, while Aly35-CD1 exhibits greater PM-degrading activity than that of Aly35-CD2 but can not degraded PG efficiently. The results suggest that the domain (Trp295-His582) is critical for PG-degrading activity, the domain has (Leu53-Lys286) higher PM-degrading activity, both catalytic domains together confer increased alginate (including M-blocks and G blocks)-degrading activity. The enzyme Aly35 and its truncations Aly35-CD1 and Aly35-CD2 will be useful tools for structural analyses and for preparing bioactive oligosaccharides, especially Aly35-CD1 can be used to prepare G unit-rich oligosaccharides from alginate.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信