Coherent Changes in Neural Motor Network Activity during Levodopa-Induced Dyskinesia in a Rat Model of Parkinson's Disease.

IF 2.5 4区 医学 Q3 NEUROSCIENCES
Elena S Brazhnik, Ivan E Mysin, Lyudmila B Popova, Vladislav V Minaychev, Nikolay I Novikov
{"title":"Coherent Changes in Neural Motor Network Activity during Levodopa-Induced Dyskinesia in a Rat Model of Parkinson's Disease.","authors":"Elena S Brazhnik, Ivan E Mysin, Lyudmila B Popova, Vladislav V Minaychev, Nikolay I Novikov","doi":"10.31083/j.jin2312221","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.</p><p><strong>Methods: </strong>Freely moving rats with unilateral 6-hydroxydopamine hydrobromide (6-OHDA)-induced nigral DA cell lesions were administered a high dose of levodopa for 7 days. Local field potentials (LFPs) and neuronal activity were recorded from electrodes implanted in the motor cortex (MCx), ventromedial nucleus of the thalamus (VM), and substantia nigra pars reticulata nucleus (SNpr).</p><p><strong>Results: </strong>Levodopa reduced the power of beta oscillations (30-36 Hz) associated with bradykinesia in PD rats in three divisions of the motor neural network (MCx, VM, and SNpr) and prompted subsequent emergence of robust high-frequency gamma oscillations (80-120 Hz) in VM and MCx, but not SNpr, LFPs. Gamma oscillations were strongly associated with the occurrence of abnormal involuntary movements (AIMs) and accompanied by an increase in spiking rates in the VM and MCx and enlarged spike-LFP synchronization with cortical gamma oscillations (68% in the VM and 34% in the MCx). In contrast, SNpr LFPs did not exhibit gamma oscillations during LID, and neuronal activity in most recordings (87%) was largely decreased and not synchronized with VM or MCx LFPs. Administration of the antidyskinetic drug 8-hydroxy-2-(dipropylamino)-tetraline hydrobromide (8-OH-DPAT) restored the initial characteristics of LFPs (30-36 Hz oscillations), rates of neuronal activity, and bradykinesia. Inhibition of VM neurons by the gamma-aminobutyric acid (GABA-A)-agonist muscimol during LID eliminated high gamma oscillations in the MCx and VM, but not dyskinesia, suggesting that gamma oscillations are not critical for the expression of AIMs. In contrast, chemogenetic activation of SNpr neurons during LID eliminated both gamma oscillations and dyskinesia.</p><p><strong>Conclusions: </strong>These findings suggest that levodopa treatment leads to crucial reduction of inhibitory control over motor networks due to a large decline in spiking of most SNpr GABAergic projecting neurons, which causes persistent hyperactivity in motor circuits, leading to the appearance of thalamocortical gamma oscillations and LID.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 12","pages":"221"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.jin2312221","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.

Methods: Freely moving rats with unilateral 6-hydroxydopamine hydrobromide (6-OHDA)-induced nigral DA cell lesions were administered a high dose of levodopa for 7 days. Local field potentials (LFPs) and neuronal activity were recorded from electrodes implanted in the motor cortex (MCx), ventromedial nucleus of the thalamus (VM), and substantia nigra pars reticulata nucleus (SNpr).

Results: Levodopa reduced the power of beta oscillations (30-36 Hz) associated with bradykinesia in PD rats in three divisions of the motor neural network (MCx, VM, and SNpr) and prompted subsequent emergence of robust high-frequency gamma oscillations (80-120 Hz) in VM and MCx, but not SNpr, LFPs. Gamma oscillations were strongly associated with the occurrence of abnormal involuntary movements (AIMs) and accompanied by an increase in spiking rates in the VM and MCx and enlarged spike-LFP synchronization with cortical gamma oscillations (68% in the VM and 34% in the MCx). In contrast, SNpr LFPs did not exhibit gamma oscillations during LID, and neuronal activity in most recordings (87%) was largely decreased and not synchronized with VM or MCx LFPs. Administration of the antidyskinetic drug 8-hydroxy-2-(dipropylamino)-tetraline hydrobromide (8-OH-DPAT) restored the initial characteristics of LFPs (30-36 Hz oscillations), rates of neuronal activity, and bradykinesia. Inhibition of VM neurons by the gamma-aminobutyric acid (GABA-A)-agonist muscimol during LID eliminated high gamma oscillations in the MCx and VM, but not dyskinesia, suggesting that gamma oscillations are not critical for the expression of AIMs. In contrast, chemogenetic activation of SNpr neurons during LID eliminated both gamma oscillations and dyskinesia.

Conclusions: These findings suggest that levodopa treatment leads to crucial reduction of inhibitory control over motor networks due to a large decline in spiking of most SNpr GABAergic projecting neurons, which causes persistent hyperactivity in motor circuits, leading to the appearance of thalamocortical gamma oscillations and LID.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
173
审稿时长
2 months
期刊介绍: JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信