The effect of silver and calcium fluoride nanoparticles on antibacterial activity of composite resin against Streptococcus mutans: An in vitro study.

Q2 Dentistry
Dental Research Journal Pub Date : 2024-11-21 eCollection Date: 2024-01-01 DOI:10.4103/drj.drj_12_24
Mehdi Fathi, Zahra Hosseinali, Tina Molaei, Somayeh Hekmatfar
{"title":"The effect of silver and calcium fluoride nanoparticles on antibacterial activity of composite resin against <i>Streptococcus mutans</i>: An <i>in vitro</i> study.","authors":"Mehdi Fathi, Zahra Hosseinali, Tina Molaei, Somayeh Hekmatfar","doi":"10.4103/drj.drj_12_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recurrent caries were attributed to the lack of antibacterial properties of the dental materials. Silver nanoparticles (AgNPs) and calcium fluoride nanoparticles (CaF2NPs) are broad-spectrum antibacterial agents. The object of the study was to investigate the antibacterial properties of composite-incorporated AgNPs and CaF2NPs on <i>Streptococcus mutans</i>.</p><p><strong>Materials and methods: </strong>This experimental study forty-eight disks containing 0.5, 1, and 1.5% wt AgNPs s (<i>n</i> = 24) and 5, 10, and 15% wt CaF2NPs were prepared from flowable composite resin (<i>n</i> = 24). The third group consisted of 9 types of the combination of AgNPs and CaF2NPs (<i>n</i> = 72). A field emission scanning electron microscope with an energy-dispersive X-ray spectroscopy analysis system was used to test for the presence of nanoparticles in composite resins. The antibacterial efficacy of dental composite was evaluated by disk diffusion agar test. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration were conducted. Data were analyzed using one-way ANOVA and multiple Tukey HSD (Honestly Significant Difference) tests. Significance level was set at 0.05.</p><p><strong>Results: </strong>Nanoparticles added to composite produce bacterial inhibition zone. The greatest inhibition of bacterial growth was recorded in the third group which contained both nanoparticles (<i>P</i> < 0.05). MIC values decreased after adding CaF2 NPs to the AgNPs-containing composite. The results of the FE-SEM test indicate the presence of AgNPs and CaF2NPs in the dental composite resin sample. On the other hand, the formation of AgNPs and their elemental nature were proved using energy dispersive X-ray microanalysis EDX analysis. According to the results, composite resins containing 0.5% of AgNPs s and 15% of CaF2NPs exhibited a significantly lower antibacterial activity compared to the 1.5% and 1% of AgNPs s with 15% of CaF2NPs (<i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>Dental composite resins-containing CaF2NPs and AgNPs showed anti-bacterial activity against <i>S. mutans</i>.</p>","PeriodicalId":11016,"journal":{"name":"Dental Research Journal","volume":"21 ","pages":"58"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/drj.drj_12_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recurrent caries were attributed to the lack of antibacterial properties of the dental materials. Silver nanoparticles (AgNPs) and calcium fluoride nanoparticles (CaF2NPs) are broad-spectrum antibacterial agents. The object of the study was to investigate the antibacterial properties of composite-incorporated AgNPs and CaF2NPs on Streptococcus mutans.

Materials and methods: This experimental study forty-eight disks containing 0.5, 1, and 1.5% wt AgNPs s (n = 24) and 5, 10, and 15% wt CaF2NPs were prepared from flowable composite resin (n = 24). The third group consisted of 9 types of the combination of AgNPs and CaF2NPs (n = 72). A field emission scanning electron microscope with an energy-dispersive X-ray spectroscopy analysis system was used to test for the presence of nanoparticles in composite resins. The antibacterial efficacy of dental composite was evaluated by disk diffusion agar test. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration were conducted. Data were analyzed using one-way ANOVA and multiple Tukey HSD (Honestly Significant Difference) tests. Significance level was set at 0.05.

Results: Nanoparticles added to composite produce bacterial inhibition zone. The greatest inhibition of bacterial growth was recorded in the third group which contained both nanoparticles (P < 0.05). MIC values decreased after adding CaF2 NPs to the AgNPs-containing composite. The results of the FE-SEM test indicate the presence of AgNPs and CaF2NPs in the dental composite resin sample. On the other hand, the formation of AgNPs and their elemental nature were proved using energy dispersive X-ray microanalysis EDX analysis. According to the results, composite resins containing 0.5% of AgNPs s and 15% of CaF2NPs exhibited a significantly lower antibacterial activity compared to the 1.5% and 1% of AgNPs s with 15% of CaF2NPs (P < 0.05).

Conclusion: Dental composite resins-containing CaF2NPs and AgNPs showed anti-bacterial activity against S. mutans.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Dental Research Journal
Dental Research Journal Dentistry-Dentistry (all)
CiteScore
1.70
自引率
0.00%
发文量
70
审稿时长
52 weeks
期刊介绍: Dental Research Journal, a publication of Isfahan University of Medical Sciences, is a peer-reviewed online journal with Bimonthly print on demand compilation of issues published. The journal’s full text is available online at http://www.drjjournal.net. The journal allows free access (Open Access) to its contents and permits authors to self-archive final accepted version of the articles on any OAI-compliant institutional / subject-based repository. The journal will cover technical and clinical studies related to health, ethical and social issues in field of Dentistry. Articles with clinical interest and implications will be given preference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信