Prem D Nayak, Büsra Dereli, David Ohayon, Shofarul Wustoni, Tania Cecilia Hidalgo Castillo, Victor Druet, Yazhou Wang, Adel Hama, Craig Combe, Sophie Griggs, Maryam Alsufyani, Rajendar Sheelamanthula, Iain McCulloch, Luigi Cavallo, Sahika Inal
{"title":"Understanding Oxygen-Induced Reactions and Their Impact on n-Type Polymeric Mixed Conductor-Based Devices.","authors":"Prem D Nayak, Büsra Dereli, David Ohayon, Shofarul Wustoni, Tania Cecilia Hidalgo Castillo, Victor Druet, Yazhou Wang, Adel Hama, Craig Combe, Sophie Griggs, Maryam Alsufyani, Rajendar Sheelamanthula, Iain McCulloch, Luigi Cavallo, Sahika Inal","doi":"10.1021/acscentsci.4c00654","DOIUrl":null,"url":null,"abstract":"<p><p>Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level. Despite empirical observations suggesting a correlation between deep LUMO levels, low ORR, and enhanced electrochemical cycling stability in water, this relationship lacks robust evidence. In this work, we delve into the electrochemical reactions of n-type polymeric mixed conductors with varying LUMO levels and assess the impact of ORR on charge storage performance and organic electrochemical transistor (OECT) operation. Our results reveal a limited correlation between LUMO levels and ORR currents, as well as the electrochemical operational stability of the films. While ORR currents minimally contribute to OECT channel currents under fixed biasing conditions, n-type films self-discharge rapidly at floating potentials in a capacitor-like configuration. The density functional theory analysis, complemented by X-ray photoelectron spectroscopy, underscores the critical role of backbone chemistry in controlling O<sub>2</sub>-related degradation pathways and device performance losses. These findings highlight the persistent challenge posed by ORR in n-type semiconductor design and advocate for shifting the focus toward exploring chemical moieties with limited O<sub>2</sub> interactions to enhance operational stability and performance at n-type film/water interfaces.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2229-2241"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.4c00654","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level. Despite empirical observations suggesting a correlation between deep LUMO levels, low ORR, and enhanced electrochemical cycling stability in water, this relationship lacks robust evidence. In this work, we delve into the electrochemical reactions of n-type polymeric mixed conductors with varying LUMO levels and assess the impact of ORR on charge storage performance and organic electrochemical transistor (OECT) operation. Our results reveal a limited correlation between LUMO levels and ORR currents, as well as the electrochemical operational stability of the films. While ORR currents minimally contribute to OECT channel currents under fixed biasing conditions, n-type films self-discharge rapidly at floating potentials in a capacitor-like configuration. The density functional theory analysis, complemented by X-ray photoelectron spectroscopy, underscores the critical role of backbone chemistry in controlling O2-related degradation pathways and device performance losses. These findings highlight the persistent challenge posed by ORR in n-type semiconductor design and advocate for shifting the focus toward exploring chemical moieties with limited O2 interactions to enhance operational stability and performance at n-type film/water interfaces.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.