Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation.

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Central Science Pub Date : 2024-12-11 eCollection Date: 2024-12-25 DOI:10.1021/acscentsci.4c01177
Nathanael P Kazmierczak, Paul H Oyala, Ryan G Hadt
{"title":"Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation.","authors":"Nathanael P Kazmierczak, Paul H Oyala, Ryan G Hadt","doi":"10.1021/acscentsci.4c01177","DOIUrl":null,"url":null,"abstract":"<p><p>Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates (<i>T</i> <sub>1</sub>) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix. For randomly oriented powder samples, spin relaxation anisotropy changes dramatically with temperature, delineating multiple regimes of relaxation processes for each Cu(II) molecule studied. We show that traditional <i>T</i> <sub>1</sub> fitting approaches cannot reliably extract this information. Single-crystal <i>T</i> <sub>1</sub> anisotropy experiments reveal a surprising change in spin relaxation symmetry between these two regimes. We interpret this switch through the concept of a spin relaxation tensor, enabling discrimination between delocalized lattice phonons and localized molecular vibrations in the two relaxation regimes. Variable-temperature <i>T</i> <sub>1</sub> anisotropy thus provides a unique spectroscopic method to interrogate the character of nuclear motions causing spin relaxation and the loss of quantum information.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2353-2362"},"PeriodicalIF":12.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672536/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.4c01177","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates (T 1) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix. For randomly oriented powder samples, spin relaxation anisotropy changes dramatically with temperature, delineating multiple regimes of relaxation processes for each Cu(II) molecule studied. We show that traditional T 1 fitting approaches cannot reliably extract this information. Single-crystal T 1 anisotropy experiments reveal a surprising change in spin relaxation symmetry between these two regimes. We interpret this switch through the concept of a spin relaxation tensor, enabling discrimination between delocalized lattice phonons and localized molecular vibrations in the two relaxation regimes. Variable-temperature T 1 anisotropy thus provides a unique spectroscopic method to interrogate the character of nuclear motions causing spin relaxation and the loss of quantum information.

分子电子自旋弛豫中声子特征的光谱特征。
自旋晶格弛豫是量子技术发展的一个关键挑战,因为它破坏了分子量子比特(qubits)和单分子磁体(SMMs)中的磁存储器的叠加态。由于缺乏光谱观测和理论模型之间的矛盾,获得自旋弛豫过程的机制洞察力已被证明具有挑战性。在这里,我们使用脉冲电子顺磁共振(EPR)来描述自旋弛豫速率(t1)作为温度和磁场方向的函数的变化,形成一个二维数据矩阵。对于随机取向的粉末样品,自旋弛豫各向异性随温度发生显著变化,描绘了所研究的每个Cu(II)分子的多种弛豫过程。我们发现传统的t1拟合方法不能可靠地提取这些信息。单晶t1各向异性实验揭示了这两种体制之间自旋弛豫对称性的惊人变化。我们通过自旋弛豫张量的概念来解释这种转换,从而能够区分两种弛豫机制中的离域晶格声子和局部分子振动。因此,变温t1各向异性提供了一种独特的光谱方法来询问引起自旋弛豫和量子信息损失的核运动的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信