Understanding the Effect of Electron Irradiation on WS2 Nanotube Devices to Improve Prototyping Routines.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-12-13 eCollection Date: 2024-12-24 DOI:10.1021/acsaelm.4c01450
Martin Kovařík, Daniel Citterberg, Estácio Paiva de Araújo, Tomáš Šikola, Miroslav Kolíbal
{"title":"Understanding the Effect of Electron Irradiation on WS<sub>2</sub> Nanotube Devices to Improve Prototyping Routines.","authors":"Martin Kovařík, Daniel Citterberg, Estácio Paiva de Araújo, Tomáš Šikola, Miroslav Kolíbal","doi":"10.1021/acsaelm.4c01450","DOIUrl":null,"url":null,"abstract":"<p><p>To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials. In this experimental study, we analyze the effect of electron beam exposure on electrical properties of individual WS<sub>2</sub> nanotubes in the FET configuration by in-operando transport measurements inside a scanning electron microscope. Upon exposure to the electron beam, we observed a significant change in the resistance of individual substrate-supported nanotubes (by a factor of 2 to 14) that was generally irreversible. The resistance of each nanotube did not return to its original state even after keeping it under ambient conditions for hours to days. Furthermore, we employed Kelvin probe force microscopy to monitor surface potential and identified that substrate charging is the primary cause of changes in nanotubes' resistance. Hence, extra care should be taken when analyzing nanostructures in contact with insulating oxides that are subject to electron exposure during or after fabrication.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 12","pages":"8776-8782"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673106/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c01450","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials. In this experimental study, we analyze the effect of electron beam exposure on electrical properties of individual WS2 nanotubes in the FET configuration by in-operando transport measurements inside a scanning electron microscope. Upon exposure to the electron beam, we observed a significant change in the resistance of individual substrate-supported nanotubes (by a factor of 2 to 14) that was generally irreversible. The resistance of each nanotube did not return to its original state even after keeping it under ambient conditions for hours to days. Furthermore, we employed Kelvin probe force microscopy to monitor surface potential and identified that substrate charging is the primary cause of changes in nanotubes' resistance. Hence, extra care should be taken when analyzing nanostructures in contact with insulating oxides that are subject to electron exposure during or after fabrication.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信