Transcriptomic and metabolomic analyses reveal the spatial role of carnitine metabolism in the progression of hepatitis B virus cirrhosis to hepatocellular carcinoma.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2024-12-13 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1461456
Pengxiang Gao, Qiuping Liu, Ziye Luo, Wenjun Pu
{"title":"Transcriptomic and metabolomic analyses reveal the spatial role of carnitine metabolism in the progression of hepatitis B virus cirrhosis to hepatocellular carcinoma.","authors":"Pengxiang Gao, Qiuping Liu, Ziye Luo, Wenjun Pu","doi":"10.3389/fmicb.2024.1461456","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Liver cirrhosis (LC) and hepatocellular carcinoma (HCC) resulting from chronic hepatitis B virus (HBV) infection are major health concerns. Identifying critical biomarkers and molecular targets is needed for early diagnosis, prognosis, and therapy of these diseases.</p><p><strong>Methods: </strong>In this study, we explored the gene expression and metabolism in the liver tissues of LC, HCC, and healthy controls, to analyse and identify potential biomarkers of disease progression. Mass spectrometry imaging was used to evaluate the spatial distribution of key metabolites.</p><p><strong>Results and discussion: </strong>The results revealed significant changes in gene expression and metabolic pathways along with disease progression. The upregulated genes were associated with extracellular matrix remodeling and cancer pathways, including LAMC1-3, COL9A2, COL1A1, MYL9, MYH11, and KAT2A. The downregulated genes were linked to immune response and fatty acid metabolism. Metabolomic analysis showed major changes in lipid and choline metabolism. Consistent changes in the expression of specific genes and metabolites were correlated with clinical data. Notably, metabolites such as L-acetylcarnitine, histamine, and 4-trimethylammoniobutanoic acid demonstrated high accuracy (AUC > 0.85) in distinguishing between healthy, LC, and HCC groups. This study identifies key gene and metabolite changes in HBV related LC and HCC, highlighting critical pathways involved in disease progression. Biomarkers like L-acetylcarnitine and KAT2A show promise for early diagnosis and prognosis, potentially improving outcomes for hepatitis liver disease patients.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1461456"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1461456","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Liver cirrhosis (LC) and hepatocellular carcinoma (HCC) resulting from chronic hepatitis B virus (HBV) infection are major health concerns. Identifying critical biomarkers and molecular targets is needed for early diagnosis, prognosis, and therapy of these diseases.

Methods: In this study, we explored the gene expression and metabolism in the liver tissues of LC, HCC, and healthy controls, to analyse and identify potential biomarkers of disease progression. Mass spectrometry imaging was used to evaluate the spatial distribution of key metabolites.

Results and discussion: The results revealed significant changes in gene expression and metabolic pathways along with disease progression. The upregulated genes were associated with extracellular matrix remodeling and cancer pathways, including LAMC1-3, COL9A2, COL1A1, MYL9, MYH11, and KAT2A. The downregulated genes were linked to immune response and fatty acid metabolism. Metabolomic analysis showed major changes in lipid and choline metabolism. Consistent changes in the expression of specific genes and metabolites were correlated with clinical data. Notably, metabolites such as L-acetylcarnitine, histamine, and 4-trimethylammoniobutanoic acid demonstrated high accuracy (AUC > 0.85) in distinguishing between healthy, LC, and HCC groups. This study identifies key gene and metabolite changes in HBV related LC and HCC, highlighting critical pathways involved in disease progression. Biomarkers like L-acetylcarnitine and KAT2A show promise for early diagnosis and prognosis, potentially improving outcomes for hepatitis liver disease patients.

转录组和代谢组分析揭示了肉碱代谢在乙型肝炎病毒性肝硬化发展为肝细胞癌过程中的空间作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信