Design of a versatile platform on nanostructured Ti-Mo-Zr alloy surface with photothermal, antibacterial and osteoinductive properties for biomedical application.
{"title":"Design of a versatile platform on nanostructured Ti-Mo-Zr alloy surface with photothermal, antibacterial and osteoinductive properties for biomedical application.","authors":"Bianyun Cai, Mintao Xue, Delin Yuan, Xueke Zhou, Yizhou Huang, Zhijun Guo","doi":"10.1016/j.colsurfb.2024.114473","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial infection and inadequate osseointegration represent significant challenges in the application of titanium (Ti)-based bone implants. Surface modification presents a promising strategy to address these obstacles. Taking advantage of silver ions, black phosphorus nanosheets (BPNs) and polydopamine (PDA), this study developed a versatile platform on the surface of Ti-12Mo-10Zr (TMZ) alloy through a multiple surface modification process, including the anodic oxidation treatment of TMZ alloy, the preparation and addition of silver-loaded BPNs (BPNs/Ag), and the coating with PDA. Our results demonstrated that silver enhanced the stability of BPNs/Ag, which were successfully loaded to the nanostructure of oxidized TMZ surface. PDA coating conferred a pH-responsive property to the surface, prolonged the release of silver ions, and improved the photothermal performance. In acidic conditions that mimic bone defect microenvironment, the platform exhibited good photothermal performance, accelerated Ag<sup>+</sup> release, enhanced antibacterial efficacy, and increased osteoinductivity. Taken together, due to its advantageous characteristics, the versatile platform provides a valuable solution to improve the surface performance of TMZ alloys.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"248 ","pages":"114473"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114473","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial infection and inadequate osseointegration represent significant challenges in the application of titanium (Ti)-based bone implants. Surface modification presents a promising strategy to address these obstacles. Taking advantage of silver ions, black phosphorus nanosheets (BPNs) and polydopamine (PDA), this study developed a versatile platform on the surface of Ti-12Mo-10Zr (TMZ) alloy through a multiple surface modification process, including the anodic oxidation treatment of TMZ alloy, the preparation and addition of silver-loaded BPNs (BPNs/Ag), and the coating with PDA. Our results demonstrated that silver enhanced the stability of BPNs/Ag, which were successfully loaded to the nanostructure of oxidized TMZ surface. PDA coating conferred a pH-responsive property to the surface, prolonged the release of silver ions, and improved the photothermal performance. In acidic conditions that mimic bone defect microenvironment, the platform exhibited good photothermal performance, accelerated Ag+ release, enhanced antibacterial efficacy, and increased osteoinductivity. Taken together, due to its advantageous characteristics, the versatile platform provides a valuable solution to improve the surface performance of TMZ alloys.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.