Facilitating Polysulfide Conversion Kinetics via Multifunctional Solid-State Electrolytes under Lean Electrolyte Conditions for Lithium-Sulfur Batteries

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hyunji Park, Jooyoung Lee, Choongho Yu
{"title":"Facilitating Polysulfide Conversion Kinetics via Multifunctional Solid-State Electrolytes under Lean Electrolyte Conditions for Lithium-Sulfur Batteries","authors":"Hyunji Park, Jooyoung Lee, Choongho Yu","doi":"10.1039/d4ta07639g","DOIUrl":null,"url":null,"abstract":"The sluggish redox kinetics of polysulfides under lean electrolyte conditions hinder practical applications of lithium-sulfur batteries. Herein, a polar solid-state electrolyte, Li10GeP2S12 (LGPS) whose ionic conductivity is higher than that of highly concentrated polysulfide electrolytes (or catholytes), could greatly alleviate the problem by providing pathways for lithium ions and attracting polysulfides to facilitate the conversion reactions. The affinity of polysulfides to LGPS and the catalytic effect enhancing kinetics were confirmed by density functional theory calculations and experimental results mainly from cyclic voltammetry and potentiostatic discharge. The LGPS inclusion in the cathode has significantly improved the performances of the cells showing a high areal capacity of 6.13 mAh cm-2 with an outstanding retention (70% at the 135th cycle) despite the extremely low electrolyte-to-sulfur ratio (E/S ratio of 2.9 µl mg-1), a high sulfur loading of 8.1 mg cm-2, and a low ratio of anode to cathode capacity (N/P ratio of 2). Further research and development could pave the way for practical and efficient energy storage solutions using multifunctional solid-state electrolyte approaches.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"14 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta07639g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The sluggish redox kinetics of polysulfides under lean electrolyte conditions hinder practical applications of lithium-sulfur batteries. Herein, a polar solid-state electrolyte, Li10GeP2S12 (LGPS) whose ionic conductivity is higher than that of highly concentrated polysulfide electrolytes (or catholytes), could greatly alleviate the problem by providing pathways for lithium ions and attracting polysulfides to facilitate the conversion reactions. The affinity of polysulfides to LGPS and the catalytic effect enhancing kinetics were confirmed by density functional theory calculations and experimental results mainly from cyclic voltammetry and potentiostatic discharge. The LGPS inclusion in the cathode has significantly improved the performances of the cells showing a high areal capacity of 6.13 mAh cm-2 with an outstanding retention (70% at the 135th cycle) despite the extremely low electrolyte-to-sulfur ratio (E/S ratio of 2.9 µl mg-1), a high sulfur loading of 8.1 mg cm-2, and a low ratio of anode to cathode capacity (N/P ratio of 2). Further research and development could pave the way for practical and efficient energy storage solutions using multifunctional solid-state electrolyte approaches.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信