Multicolored Bifacial Perovskite Solar Cells through Top Electrode Engineering

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiajun Zheng, Wendong Zhu, Jiaxing Xiong, Qiuxiang Wang, Rong Xuan, Xinrui Sun, Xinlei Gan, Xiaohui Liu, Like Huang, Yuejin Zhu, Jing Zhang
{"title":"Multicolored Bifacial Perovskite Solar Cells through Top Electrode Engineering","authors":"Jiajun Zheng, Wendong Zhu, Jiaxing Xiong, Qiuxiang Wang, Rong Xuan, Xinrui Sun, Xinlei Gan, Xiaohui Liu, Like Huang, Yuejin Zhu, Jing Zhang","doi":"10.1021/acsami.4c16756","DOIUrl":null,"url":null,"abstract":"Power generation and architectural beauty are equally important for designing efficient and esthetically appealing bifacial perovskite solar cells (PSCs). In this work, efficient and multicolored p-i-n-structured PSCs are achieved by taking advantage of a dielectric/metal/dielectric (DMD)-type (MoO<sub>3</sub>/Ni/Ag/MoO<sub>3</sub>) transparent counter electrode. The MoO<sub>3</sub>/Ni underlayer effectively promotes the formation of a continuous and conductive ultrathin Ag transparent film, especially the 1 nm Ni seed layer adjusts the interface energy level between perovskite/MoO<sub>3</sub> and Ag, resulting in Ohmic contact of the electrode to promote charge extraction and collection. The upper MoO<sub>3</sub> layer with varied thicknesses realizes a spectrally selective antireflection coating, enhancing the rear-side efficiency and forming vivid rear-side colors by optical tuning. As a result, colorful bifacial perovskite solar cells with 20.6% front-side efficiency and 57.6–74.4% bifacial factor are obtained together with colorful rear-side appearance. The bifacial PSCs exhibit good stability by protection from the upper MoO<sub>3</sub> layer. This work highlights an effective electric and optic design of the top electrode for artistic bifacial PSCs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"3 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16756","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Power generation and architectural beauty are equally important for designing efficient and esthetically appealing bifacial perovskite solar cells (PSCs). In this work, efficient and multicolored p-i-n-structured PSCs are achieved by taking advantage of a dielectric/metal/dielectric (DMD)-type (MoO3/Ni/Ag/MoO3) transparent counter electrode. The MoO3/Ni underlayer effectively promotes the formation of a continuous and conductive ultrathin Ag transparent film, especially the 1 nm Ni seed layer adjusts the interface energy level between perovskite/MoO3 and Ag, resulting in Ohmic contact of the electrode to promote charge extraction and collection. The upper MoO3 layer with varied thicknesses realizes a spectrally selective antireflection coating, enhancing the rear-side efficiency and forming vivid rear-side colors by optical tuning. As a result, colorful bifacial perovskite solar cells with 20.6% front-side efficiency and 57.6–74.4% bifacial factor are obtained together with colorful rear-side appearance. The bifacial PSCs exhibit good stability by protection from the upper MoO3 layer. This work highlights an effective electric and optic design of the top electrode for artistic bifacial PSCs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信