Deep removal impurities in the process of preparing high-purity magnesium by vacuum gasification

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Dong Liang, Lipeng Wang, Tingzhuang Ma, Rong Yu, Yang Tian, Baoqiang Xu, Bin Yang
{"title":"Deep removal impurities in the process of preparing high-purity magnesium by vacuum gasification","authors":"Dong Liang, Lipeng Wang, Tingzhuang Ma, Rong Yu, Yang Tian, Baoqiang Xu, Bin Yang","doi":"10.1016/j.jma.2024.11.010","DOIUrl":null,"url":null,"abstract":"Magnesium (Mg), as one of the most abundant elements in earth's crust, is the lightest structural metal with extensive applications across various industries. However, the performance of Mg-based products is highly dependent on their impurity levels, and the lack of high-purity Mg, along with efficient purification method, has posed significant challenge to its widespread industrial adoption. This study investigates the impurity behavior in Mg ingots during the vacuum gasification purification process. Through the analysis of binary phase diagrams, iron (Fe)-based foam material was selected for the filtration and purification of Mg vapor in a vacuum tube furnace. A novel approach combining vacuum gasification, vapor purification, and directional condensation is proposed. The effect of filter pore sizes and filtration temperatures on the efficacy of impurity removal was evaluated. Experimental results demonstrate that Fe-based foam with a pore size of 60 ppi, at a filtration temperature of 773 K, effectively removes impurities such as calcium (Ca), potassium (K), sodium (Na), manganese (Mn), silicon (Si), aluminum (Al), and various oxides, sulfides, and chlorides from the vapor phase. Consequently, high-purity Mg with a purity level exceeding 5N3 was obtained in the condensation zone.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"83 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.11.010","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium (Mg), as one of the most abundant elements in earth's crust, is the lightest structural metal with extensive applications across various industries. However, the performance of Mg-based products is highly dependent on their impurity levels, and the lack of high-purity Mg, along with efficient purification method, has posed significant challenge to its widespread industrial adoption. This study investigates the impurity behavior in Mg ingots during the vacuum gasification purification process. Through the analysis of binary phase diagrams, iron (Fe)-based foam material was selected for the filtration and purification of Mg vapor in a vacuum tube furnace. A novel approach combining vacuum gasification, vapor purification, and directional condensation is proposed. The effect of filter pore sizes and filtration temperatures on the efficacy of impurity removal was evaluated. Experimental results demonstrate that Fe-based foam with a pore size of 60 ppi, at a filtration temperature of 773 K, effectively removes impurities such as calcium (Ca), potassium (K), sodium (Na), manganese (Mn), silicon (Si), aluminum (Al), and various oxides, sulfides, and chlorides from the vapor phase. Consequently, high-purity Mg with a purity level exceeding 5N3 was obtained in the condensation zone.

Abstract Image

真空气化法制备高纯镁过程中杂质的深度去除
镁(Mg)是地壳中含量最丰富的元素之一,是最轻的结构金属,广泛应用于各个工业领域。然而,镁基产品的性能高度依赖于其杂质水平,缺乏高纯度的镁,以及有效的纯化方法,对其广泛的工业应用构成了重大挑战。研究了真空气化净化过程中镁锭中的杂质行为。通过对二元相图的分析,选择了铁基泡沫材料在真空管炉中对Mg蒸气进行过滤净化。提出了一种真空气化、蒸汽净化和定向冷凝相结合的新方法。考察了过滤孔径和过滤温度对除杂效果的影响。实验结果表明,孔径为60 ppi的铁基泡沫在773 K的过滤温度下,可以有效地去除气相中的钙(Ca)、钾(K)、钠(Na)、锰(Mn)、硅(Si)、铝(Al)等杂质以及各种氧化物、硫化物和氯化物。从而在缩合区获得了纯度超过5N3的高纯Mg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信