Heongwon Suh , Doheon Koo , Dong-Hee Son , Jin Park , Sooheon Kim , Baek-Il Bae , Chang-Sik Choi , Hongyun So , Sungchul Bae
{"title":"A novel strategy utilizing graphene oxide/functionalized carbon nanotube/nanosilica sheet for nanomaterial incorporation in cement paste","authors":"Heongwon Suh , Doheon Koo , Dong-Hee Son , Jin Park , Sooheon Kim , Baek-Il Bae , Chang-Sik Choi , Hongyun So , Sungchul Bae","doi":"10.1016/j.cemconcomp.2024.105918","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the limitations of conventional methods in incorporating nanomaterials, including prolonged dispersion times and handling challenges in construction field applications, by developing graphene oxide/functionalized carbon nanotube/nanosilica (GCS) sheets. The GCS sheet, as a portable sheet form of a nanomaterial composite, achieves high nanomaterial dispersibility with only 1 min of sonication. The dispersion efficiency of the GCS sheets was evaluated using UV–vis spectroscopy, zeta potential measurements, and transmission electron microscopy, and the impact on material properties was assessed using compressive strength tests. The hydration processes were investigated using X-ray diffraction and <sup>29</sup>Si nuclear magnetic resonance, and the nanomaterial dispersion within the cement matrix was studied using synchrotron X-ray nanoimaging. The GCS sheet facilitated more effective nanosilica dispersion on the graphene oxide plane compared to the powder form, achieving optimal dispersion in 1 min. This resulted in enhanced compressive strength, increased polymerization of calcium silicate hydrates, and a more elongated pore structure owing to the reduced aggregation of the GCS composites.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"157 ","pages":"Article 105918"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524004918","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the limitations of conventional methods in incorporating nanomaterials, including prolonged dispersion times and handling challenges in construction field applications, by developing graphene oxide/functionalized carbon nanotube/nanosilica (GCS) sheets. The GCS sheet, as a portable sheet form of a nanomaterial composite, achieves high nanomaterial dispersibility with only 1 min of sonication. The dispersion efficiency of the GCS sheets was evaluated using UV–vis spectroscopy, zeta potential measurements, and transmission electron microscopy, and the impact on material properties was assessed using compressive strength tests. The hydration processes were investigated using X-ray diffraction and 29Si nuclear magnetic resonance, and the nanomaterial dispersion within the cement matrix was studied using synchrotron X-ray nanoimaging. The GCS sheet facilitated more effective nanosilica dispersion on the graphene oxide plane compared to the powder form, achieving optimal dispersion in 1 min. This resulted in enhanced compressive strength, increased polymerization of calcium silicate hydrates, and a more elongated pore structure owing to the reduced aggregation of the GCS composites.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.