Enhancing Microdomain Consistency in Polymer Electrolytes towards Sustainable Lithium Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yang Feng, Yanpeng Fan, Lingfei Zhao, Jiangtao Yu, Yaqi Liao, Tongrui Zhang, Ruochen Zhang, Haitao Zhu, Xingwei Sun, Zhe Hu, Kai Zhang, Jun Chen
{"title":"Enhancing Microdomain Consistency in Polymer Electrolytes towards Sustainable Lithium Batteries","authors":"Yang Feng, Yanpeng Fan, Lingfei Zhao, Jiangtao Yu, Yaqi Liao, Tongrui Zhang, Ruochen Zhang, Haitao Zhu, Xingwei Sun, Zhe Hu, Kai Zhang, Jun Chen","doi":"10.1002/anie.202417105","DOIUrl":null,"url":null,"abstract":"Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li+ conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li+ flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in-situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure. Through the integration of X-ray computed tomography analyses and theoretical simulations, our research identifies that the improvement of microdomain consistency in GPEs is beneficial for enhancing its mechanical strength, homogenizing ionic/electronic field distribution and upgrading the interface stability with the elctrodes. Moreover, consistently spread MOFs bind effectively with Lewis-base anions of Li salts, enhancing Li+ kinetics. Owing to these advantages, the developed GPEs achieve a high conductivity of 1.51 mS cm−1 and a Li+ transference number of 0.66, resulting in exceptional cyclability of lithium metal electrodes (over 1800 hours). Additionally, the solid-state NCM811//Li pouch batteries exhibit an impressive capacity retention of 94.2% over 200 cycles with an N/P ratio of 1.69. This study emphasizes the significant impact of microdomain structural chemistry on the advancement of solid-state batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"162 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417105","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li+ conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li+ flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in-situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure. Through the integration of X-ray computed tomography analyses and theoretical simulations, our research identifies that the improvement of microdomain consistency in GPEs is beneficial for enhancing its mechanical strength, homogenizing ionic/electronic field distribution and upgrading the interface stability with the elctrodes. Moreover, consistently spread MOFs bind effectively with Lewis-base anions of Li salts, enhancing Li+ kinetics. Owing to these advantages, the developed GPEs achieve a high conductivity of 1.51 mS cm−1 and a Li+ transference number of 0.66, resulting in exceptional cyclability of lithium metal electrodes (over 1800 hours). Additionally, the solid-state NCM811//Li pouch batteries exhibit an impressive capacity retention of 94.2% over 200 cycles with an N/P ratio of 1.69. This study emphasizes the significant impact of microdomain structural chemistry on the advancement of solid-state batteries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信