GALIC: hybrid multi-qubitwise pauli grouping for quantum computing measurement

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Matthew X Burns, Chenxu Liu, Samuel Stein, Bo Peng, Karol Kowalski and Ang Li
{"title":"GALIC: hybrid multi-qubitwise pauli grouping for quantum computing measurement","authors":"Matthew X Burns, Chenxu Liu, Samuel Stein, Bo Peng, Karol Kowalski and Ang Li","doi":"10.1088/2058-9565/ad9d74","DOIUrl":null,"url":null,"abstract":"Observable estimation is a core primitive in NISQ-era algorithms targeting quantum chemistry applications. To reduce the state preparation overhead required for accurate estimation, recent works have proposed various simultaneous measurement schemes to lower estimator variance. Two primary grouping schemes have been proposed: full commutativity (FC) and qubit-wise commutativity (QWC), with no compelling means of interpolation. In this work we propose a generalized framework for designing and analyzing context-aware hybrid FC/QWC commutativity relations. We use our framework to propose a noise-and-connectivity aware grouping strategy: Generalized backend-Aware pauLI Commutation (GALIC). We demonstrate how GALIC interpolates between FC and QWC, maintaining estimator accuracy in Hamiltonian estimation while lowering variance by an average of 20% compared to QWC. We also explore the design space of near-term quantum devices using the GALIC framework, specifically comparing device noise levels and connectivity. We find that error suppression has a more than 10 × larger impact on device-aware estimator variance than qubit connectivity with even larger correlation differences in estimator biases.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"31 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad9d74","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Observable estimation is a core primitive in NISQ-era algorithms targeting quantum chemistry applications. To reduce the state preparation overhead required for accurate estimation, recent works have proposed various simultaneous measurement schemes to lower estimator variance. Two primary grouping schemes have been proposed: full commutativity (FC) and qubit-wise commutativity (QWC), with no compelling means of interpolation. In this work we propose a generalized framework for designing and analyzing context-aware hybrid FC/QWC commutativity relations. We use our framework to propose a noise-and-connectivity aware grouping strategy: Generalized backend-Aware pauLI Commutation (GALIC). We demonstrate how GALIC interpolates between FC and QWC, maintaining estimator accuracy in Hamiltonian estimation while lowering variance by an average of 20% compared to QWC. We also explore the design space of near-term quantum devices using the GALIC framework, specifically comparing device noise levels and connectivity. We find that error suppression has a more than 10 × larger impact on device-aware estimator variance than qubit connectivity with even larger correlation differences in estimator biases.
GALIC:用于量子计算测量的混合多量子位泡利分组
可观测估计是针对量子化学应用的nisq时代算法的核心原语。为了减少精确估计所需的状态准备开销,最近的工作提出了各种同时测量方案来降低估计器方差。提出了两种主要的分组方案:完全交换性(FC)和量子比特交换性(QWC),没有强制的插值方法。在这项工作中,我们提出了一个通用的框架来设计和分析上下文感知的混合FC/QWC交换关系。我们使用我们的框架提出了一种噪声和连通性感知的分组策略:广义后端感知pauLI交换(GALIC)。我们演示了GALIC如何在FC和QWC之间进行插值,在hamilton估计中保持估计器的准确性,同时与QWC相比平均降低了20%的方差。我们还探索了使用GALIC框架的近期量子器件的设计空间,特别是比较了器件的噪声水平和连接性。我们发现,误差抑制对设备感知估计器方差的影响比量子比特连通性大10倍以上,估计器偏差的相关差异甚至更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信