A Universal Strategy to Mitigate Microphase Separation via Cellulose Nanocrystal Hydration in Fabricating Strong, Tough, and Fatigue-Resistant Hydrogels

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siheng Wang, Zhengyang Yu, Xia Sun, Mahyar Panahi-Sarmad, Pu Yang, Penghui Zhu, Yeling Zhu, He Liu, Feng Jiang
{"title":"A Universal Strategy to Mitigate Microphase Separation via Cellulose Nanocrystal Hydration in Fabricating Strong, Tough, and Fatigue-Resistant Hydrogels","authors":"Siheng Wang,&nbsp;Zhengyang Yu,&nbsp;Xia Sun,&nbsp;Mahyar Panahi-Sarmad,&nbsp;Pu Yang,&nbsp;Penghui Zhu,&nbsp;Yeling Zhu,&nbsp;He Liu,&nbsp;Feng Jiang","doi":"10.1002/adma.202416916","DOIUrl":null,"url":null,"abstract":"<p>As a common natural phenomenon, phase separation is exploited for the development of high-performance hydrogels. Using supersaturated salt to create microphase-separated hydrogels with strengthened mechanical properties has gained widespread attention. However, such strengthened hydrogel loses its intrinsic flexibility, making the phase separation strategy unsuitable for the fabrication of stretchable and tough hydrogels. Here, a phase-engineering design strategy is introduced to produce stretchable yet tough hydrogels using supersaturated NaAc salt, by leveraging the hydration effect of cellulose nanocrystal (CNC) to mitigate microphase separation. The CNC-mitigated microphase-separated hydrogel presents unprecedented mechanical properties, for example, tensile strength of 1.8 MPa with a fracture strain of 4730%, toughness of 43.1 MJ m<sup>−3</sup>, fracture energy of 75.4 kJ m<sup>−2</sup>, and fatigue threshold up to 3884.7 J m<sup>−2</sup>. Furthermore, this approach is universal in synthesizing various microphase separation-enhanced polymer gels, including polyacrylic acid, poly(acrylic acid-co-acrylamide), gelatin, and alginate. These advancements provide insights into the incorporation of CNC-mediated microphase separation structures in hydrogels, which will foster the future development of high-performance soft materials.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 7","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202416916","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202416916","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As a common natural phenomenon, phase separation is exploited for the development of high-performance hydrogels. Using supersaturated salt to create microphase-separated hydrogels with strengthened mechanical properties has gained widespread attention. However, such strengthened hydrogel loses its intrinsic flexibility, making the phase separation strategy unsuitable for the fabrication of stretchable and tough hydrogels. Here, a phase-engineering design strategy is introduced to produce stretchable yet tough hydrogels using supersaturated NaAc salt, by leveraging the hydration effect of cellulose nanocrystal (CNC) to mitigate microphase separation. The CNC-mitigated microphase-separated hydrogel presents unprecedented mechanical properties, for example, tensile strength of 1.8 MPa with a fracture strain of 4730%, toughness of 43.1 MJ m−3, fracture energy of 75.4 kJ m−2, and fatigue threshold up to 3884.7 J m−2. Furthermore, this approach is universal in synthesizing various microphase separation-enhanced polymer gels, including polyacrylic acid, poly(acrylic acid-co-acrylamide), gelatin, and alginate. These advancements provide insights into the incorporation of CNC-mediated microphase separation structures in hydrogels, which will foster the future development of high-performance soft materials.

Abstract Image

Abstract Image

一种通过纤维素纳米晶体水化来减轻微相分离的通用策略,用于制造强、韧、抗疲劳的水凝胶
作为一种常见的自然现象,相分离被用于高性能水凝胶的开发。利用过饱和盐制备具有增强力学性能的微相分离水凝胶得到了广泛的关注。然而,这种增强的水凝胶失去了其固有的柔韧性,使得相分离策略不适合制造可拉伸和坚韧的水凝胶。本文介绍了一种相位工程设计策略,通过利用纤维素纳米晶体(CNC)的水化效应来减轻微相分离,利用过饱和NaAc盐生产可拉伸且坚韧的水凝胶。微相分离水凝胶的抗拉强度为1.8 MPa,断裂应变为4730%,韧性为43.1 MJ m−3,断裂能为75.4 kJ m−2,疲劳阈值高达3884.7 J m−2,具有前所未有的力学性能。此外,这种方法在合成各种微相分离增强聚合物凝胶中是通用的,包括聚丙烯酸、聚(丙烯酸-共丙烯酰胺)、明胶和海藻酸盐。这些进展为在水凝胶中加入cnc介导的微相分离结构提供了见解,这将促进高性能软材料的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信