Dislocation-Induced Local and Global Photoconductivity Enhancement and Mechanisms in Iron-Doped SrTiO3

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mehrzad Soleimany, Till Frömling, Jürgen Rödel, Marin Alexe
{"title":"Dislocation-Induced Local and Global Photoconductivity Enhancement and Mechanisms in Iron-Doped SrTiO3","authors":"Mehrzad Soleimany, Till Frömling, Jürgen Rödel, Marin Alexe","doi":"10.1002/adfm.202417952","DOIUrl":null,"url":null,"abstract":"Dislocations have a tremendous potential to alter band structure and transport properties. However, their impact on the optoelectronic properties of metal oxides is not thoroughly studied. This is mostly due to the early work on classical semiconductors, where dislocations are found to have detrimental effects. In this study, a simple method is developed to introduce a high density of dislocations over a large macroscopic volume of Fe-doped SrTiO<sub>3</sub> single crystals. As a result, the photoconductivity revealed by static and dynamic measurements increases by at least one order of magnitude. A detailed analysis based on photo-Hall, spectral photoresponsivity, time-resolved photocurrent, and conductive AFM, focusing on the quantum paraelectric state of SrTiO<sub>3</sub>, is presented to shed light on the possible mechanisms behind higher generated photocurrent. These findings indicate that the increased photoconductivity results from a higher charge carrier generation rate due to new energy states induced by dislocations, possibly accompanied by an enhancement of electron effective mass.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"70 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417952","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dislocations have a tremendous potential to alter band structure and transport properties. However, their impact on the optoelectronic properties of metal oxides is not thoroughly studied. This is mostly due to the early work on classical semiconductors, where dislocations are found to have detrimental effects. In this study, a simple method is developed to introduce a high density of dislocations over a large macroscopic volume of Fe-doped SrTiO3 single crystals. As a result, the photoconductivity revealed by static and dynamic measurements increases by at least one order of magnitude. A detailed analysis based on photo-Hall, spectral photoresponsivity, time-resolved photocurrent, and conductive AFM, focusing on the quantum paraelectric state of SrTiO3, is presented to shed light on the possible mechanisms behind higher generated photocurrent. These findings indicate that the increased photoconductivity results from a higher charge carrier generation rate due to new energy states induced by dislocations, possibly accompanied by an enhancement of electron effective mass.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信