Novel topological phenomena of timelike circular orbits for charged test particles

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Xu Ye and Shao-Wen Wei
{"title":"Novel topological phenomena of timelike circular orbits for charged test particles","authors":"Xu Ye and Shao-Wen Wei","doi":"10.1088/1361-6382/ad9f14","DOIUrl":null,"url":null,"abstract":"The topological approach has recently been successfully employed to investigate timelike circular orbits (TCOs) for massive neutral test particles. The observed vanishing topological number implies that these TCOs occur in pairs. However, the behavior of charged test particles in this regard remains unexplored. To address this issue, our study focuses on examining the influence of particle charge on the topology of TCOs within a spherically symmetrical black hole spacetime holding a nonvanishing radial electric field. We consider four distinct cases based on the charges of the particle and the black hole: unlike strong charge, unlike weak charge, like weak charge, and like strong charge. For each case, we calculate the corresponding topological number. Our results reveal that when the charge is large enough, the topological number takes a value of -1 instead of 0, which differs from the neutral particle scenario. Consequently, in cases of small charges, the TCOs appear in pairs, whereas in cases of larger charges, an additional unstable TCO emerges. These findings shed light on the influence of the particle charge on the topological properties and number of TCOs.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"327 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad9f14","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The topological approach has recently been successfully employed to investigate timelike circular orbits (TCOs) for massive neutral test particles. The observed vanishing topological number implies that these TCOs occur in pairs. However, the behavior of charged test particles in this regard remains unexplored. To address this issue, our study focuses on examining the influence of particle charge on the topology of TCOs within a spherically symmetrical black hole spacetime holding a nonvanishing radial electric field. We consider four distinct cases based on the charges of the particle and the black hole: unlike strong charge, unlike weak charge, like weak charge, and like strong charge. For each case, we calculate the corresponding topological number. Our results reveal that when the charge is large enough, the topological number takes a value of -1 instead of 0, which differs from the neutral particle scenario. Consequently, in cases of small charges, the TCOs appear in pairs, whereas in cases of larger charges, an additional unstable TCO emerges. These findings shed light on the influence of the particle charge on the topological properties and number of TCOs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信