Enhanced Transformation Kinetics of Polysulfides Enabled by Synergistic Catalysis of Functional Graphitic Carbon Nitride for High-Performance Li-S Batteries
{"title":"Enhanced Transformation Kinetics of Polysulfides Enabled by Synergistic Catalysis of Functional Graphitic Carbon Nitride for High-Performance Li-S Batteries","authors":"Peng Chen, Tianyu Huang, Tianyu Wei, Bing Ding, Hui Dou, Xiaogang Zhang","doi":"10.1002/adfm.202420351","DOIUrl":null,"url":null,"abstract":"The introduction of an electrocatalyst to accelerate the kinetics of lithium polysulfides (LiPSs) reduction/oxidation is beneficial to enhance the capacity of sulfur cathode and inhibit the shuttling effect of LiPSs. However, current electrocatalysts mainly focus on the metal-based active sites to reduce the reaction barriers, and there remains a great challenge in developing light-weighted metal-free catalysts. In this work, 1D graphitic carbon nitride nanorods (g-C<sub>3</sub>N<sub>4</sub>-NRs) with carboxyl (─COOH) and acylamide (─CONH<sub>2</sub>) functional groups are designed as metal-free electrocatalysts for lithium-sulfur batteries to accelerate the transport of Li<sup>+</sup> and the conversion of LiPSs. The density functional theory (DFT) calculations prove that the existence of ─COOH group realizes the adsorption of LiPSs and accelerates the transport of Li<sup>+</sup>, while the ─CONH<sub>2</sub> groups reduce the reaction energy barrier of S<sub>8</sub> to Li<sub>2</sub>S. In addition, in situ UV–vis and Li<sub>2</sub>S nucleation/dissociation experiments also verify that g-C<sub>3</sub>N<sub>4</sub>-NRs achieve rapid adsorption and transformation of LiPSs under the synergistic action of ─COOH and ─CONH<sub>2</sub> functional groups. Consequently, the sulfur cathode based on the g-C<sub>3</sub>N<sub>4</sub>-NRs-PP separator remains at a specific capacity of 700.3 mAh g<sup>−1</sup> after 70 cycles at 0.2 C, at 0 °C. This work provides a new strategy for breaking through the bottleneck of metal-free catalysts for high-performance lithium-sulfur batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"202 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420351","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of an electrocatalyst to accelerate the kinetics of lithium polysulfides (LiPSs) reduction/oxidation is beneficial to enhance the capacity of sulfur cathode and inhibit the shuttling effect of LiPSs. However, current electrocatalysts mainly focus on the metal-based active sites to reduce the reaction barriers, and there remains a great challenge in developing light-weighted metal-free catalysts. In this work, 1D graphitic carbon nitride nanorods (g-C3N4-NRs) with carboxyl (─COOH) and acylamide (─CONH2) functional groups are designed as metal-free electrocatalysts for lithium-sulfur batteries to accelerate the transport of Li+ and the conversion of LiPSs. The density functional theory (DFT) calculations prove that the existence of ─COOH group realizes the adsorption of LiPSs and accelerates the transport of Li+, while the ─CONH2 groups reduce the reaction energy barrier of S8 to Li2S. In addition, in situ UV–vis and Li2S nucleation/dissociation experiments also verify that g-C3N4-NRs achieve rapid adsorption and transformation of LiPSs under the synergistic action of ─COOH and ─CONH2 functional groups. Consequently, the sulfur cathode based on the g-C3N4-NRs-PP separator remains at a specific capacity of 700.3 mAh g−1 after 70 cycles at 0.2 C, at 0 °C. This work provides a new strategy for breaking through the bottleneck of metal-free catalysts for high-performance lithium-sulfur batteries.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.