In Situ Polymerized Fluorine-Free Ether Gel Polymer Electrolyte with Stable Interface for High-Voltage Lithium Metal Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xuanfeng Chen, Fulu Chu, Daqing Li, Mingjiang Si, Mengting Liu, Feixiang Wu
{"title":"In Situ Polymerized Fluorine-Free Ether Gel Polymer Electrolyte with Stable Interface for High-Voltage Lithium Metal Batteries","authors":"Xuanfeng Chen, Fulu Chu, Daqing Li, Mingjiang Si, Mengting Liu, Feixiang Wu","doi":"10.1002/adfm.202421965","DOIUrl":null,"url":null,"abstract":"Lithium metal batteries offer increased energy density compared to traditional lithium-ion batteries. Commercial carbonate-based electrolytes are incompatible with lithium metal anodes, while ether-based electrolytes, though more suitable, tend to degrade under high potentials. Here, a fluorine-free ether-based gel polymer electrolyte (FEGPE) has been developed via incorporating lithium bis((trifluoromethyl)sulfonyl)azanide (LiTFSI) as lithium salt, 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) as solvents, and indium trifluoromethanesulphonate (In(OTF)<sub>3</sub>) as an initiator. DME is used to promote dissolution of the In(OTF)<sub>3</sub> in DOL, along with enhanced ion transport of the FEGPE. Compared to traditional ether-based liquid electrolytes, the FEGPE demonstrates significantly improved antioxidant decomposition ability at high potentials, stemming from intermolecular hydrogen bond formation and decreased lone-pair electron activity of ether oxygen. Additionally, the FEGPE reduces the lithium deposition energy barrier and enables a stable electrolyte/electrode interface by forming Li-In alloys and LiF components in solid electrolyte interphases. In turn, Li|FEGPE|LiFePO<sub>4</sub> cells exhibit a high initial capacity of 151 mAh g<sup>−1</sup> at 0.5 C, with an outstanding capacity retention of 97% over 300 cycles. For high-voltage cathodes, Li|FEGPE|LiN<sub>0.8</sub>iCo<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cells deliver an initial capacity of 167 mAh g<sup>−1</sup> at 1 C, achieving a capacity retention of 75% over 500 cycles.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"81 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202421965","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal batteries offer increased energy density compared to traditional lithium-ion batteries. Commercial carbonate-based electrolytes are incompatible with lithium metal anodes, while ether-based electrolytes, though more suitable, tend to degrade under high potentials. Here, a fluorine-free ether-based gel polymer electrolyte (FEGPE) has been developed via incorporating lithium bis((trifluoromethyl)sulfonyl)azanide (LiTFSI) as lithium salt, 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) as solvents, and indium trifluoromethanesulphonate (In(OTF)3) as an initiator. DME is used to promote dissolution of the In(OTF)3 in DOL, along with enhanced ion transport of the FEGPE. Compared to traditional ether-based liquid electrolytes, the FEGPE demonstrates significantly improved antioxidant decomposition ability at high potentials, stemming from intermolecular hydrogen bond formation and decreased lone-pair electron activity of ether oxygen. Additionally, the FEGPE reduces the lithium deposition energy barrier and enables a stable electrolyte/electrode interface by forming Li-In alloys and LiF components in solid electrolyte interphases. In turn, Li|FEGPE|LiFePO4 cells exhibit a high initial capacity of 151 mAh g−1 at 0.5 C, with an outstanding capacity retention of 97% over 300 cycles. For high-voltage cathodes, Li|FEGPE|LiN0.8iCo0.1Mn0.1O2 cells deliver an initial capacity of 167 mAh g−1 at 1 C, achieving a capacity retention of 75% over 500 cycles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信