Estimation of the Impact of Climate Warming on Spring Wheat (Triticum aestivum L.) Phenology From Observations and Modelling in the Arid Region of Northwest China
{"title":"Estimation of the Impact of Climate Warming on Spring Wheat (Triticum aestivum L.) Phenology From Observations and Modelling in the Arid Region of Northwest China","authors":"Lu Liu, Xi Chen","doi":"10.1111/jac.70011","DOIUrl":null,"url":null,"abstract":"Climate warming has induced shifts in the phenological period and thus affected cultivar selection and effective crop management. Particularly, the great climate warming in the dry environment could have more effects on the phenology of spring wheat with the distinct cycle of biological events during growth. In this study, the daily observations of spring wheat phenology and meteorology from 1991 to 2018 were used to analyse changes in phenology concerning accumulated temperature in the Hexi Corridor region of Northwest China. Five crop growth models (WheatGrow, WOFOST, CropSyst, CERES‐Wheat and APSIM‐Wheat) were selected to evaluate the reliability of the phenological stage simulations in the study region. Results show that in the past 28 years, the annual accumulated temperature in the whole growth period from sowing to maturity increased by 3.08°C–8.35°C/a at three sites of the region. Climate warming shortened the phenological period at rates of 3.56–4.49 days/10a, mostly attributed to the shortened duration from anthesis to maturity. Statistical analysis demonstrated that the shortened phenological period cannot be simply expressed by the linear correlation between the length of phenological phases and accumulated temperature in the respective growth stages. The five wheat growth models after parameter validation can generally capture the phenological dates, and WOFOST performed best at the three sites. However, when the calibrated model was used for simulations of long‐term variations of phenological dates, the accumulated errors in simulations could result in large deviations of the predicted physiological change to the observations.","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"44 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jac.70011","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate warming has induced shifts in the phenological period and thus affected cultivar selection and effective crop management. Particularly, the great climate warming in the dry environment could have more effects on the phenology of spring wheat with the distinct cycle of biological events during growth. In this study, the daily observations of spring wheat phenology and meteorology from 1991 to 2018 were used to analyse changes in phenology concerning accumulated temperature in the Hexi Corridor region of Northwest China. Five crop growth models (WheatGrow, WOFOST, CropSyst, CERES‐Wheat and APSIM‐Wheat) were selected to evaluate the reliability of the phenological stage simulations in the study region. Results show that in the past 28 years, the annual accumulated temperature in the whole growth period from sowing to maturity increased by 3.08°C–8.35°C/a at three sites of the region. Climate warming shortened the phenological period at rates of 3.56–4.49 days/10a, mostly attributed to the shortened duration from anthesis to maturity. Statistical analysis demonstrated that the shortened phenological period cannot be simply expressed by the linear correlation between the length of phenological phases and accumulated temperature in the respective growth stages. The five wheat growth models after parameter validation can generally capture the phenological dates, and WOFOST performed best at the three sites. However, when the calibrated model was used for simulations of long‐term variations of phenological dates, the accumulated errors in simulations could result in large deviations of the predicted physiological change to the observations.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.