Phillip J. Brown , J. Edward F. Green , Benjamin J. Binder , James M. Osborne
{"title":"Competing mechanisms for the buckling of an epithelial monolayer identified using multicellular simulation","authors":"Phillip J. Brown , J. Edward F. Green , Benjamin J. Binder , James M. Osborne","doi":"10.1016/j.mbs.2024.109367","DOIUrl":null,"url":null,"abstract":"<div><div>A model using the rigid body multi-cellular framework (RBMCF) is implemented to investigate the mechanisms of buckling of an epithelial monolayer. Specifically, the deformation of a monolayer of epithelial cells which are attached to a basement membrane and the surrounding stromal tissue. The epithelial monolayer, supporting basement membrane and stromal tissue are modelled using two separate vertex dynamics models (one for the epithelial monolayer layer and one for the basement membrane and stromal tissue combined) and interactions between the two are considered using the RBMCF to ensure biologically realistic interactions. Model simulations are used to investigate the effects of cell–stromal attachment and membrane rigidity on buckling behaviour. We demonstrate that there are two competing modes of buckling, stromal deformation and stromal separation.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"380 ","pages":"Article 109367"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002555642400227X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A model using the rigid body multi-cellular framework (RBMCF) is implemented to investigate the mechanisms of buckling of an epithelial monolayer. Specifically, the deformation of a monolayer of epithelial cells which are attached to a basement membrane and the surrounding stromal tissue. The epithelial monolayer, supporting basement membrane and stromal tissue are modelled using two separate vertex dynamics models (one for the epithelial monolayer layer and one for the basement membrane and stromal tissue combined) and interactions between the two are considered using the RBMCF to ensure biologically realistic interactions. Model simulations are used to investigate the effects of cell–stromal attachment and membrane rigidity on buckling behaviour. We demonstrate that there are two competing modes of buckling, stromal deformation and stromal separation.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.