Ali Mehrvar, Solmaz Ghanbari, Gökhan Söylemezoğlu, Umut Toprak
{"title":"A novel tank-mix formulation increases the efficacy of alphabaculoviruses on different phylloplanes.","authors":"Ali Mehrvar, Solmaz Ghanbari, Gökhan Söylemezoğlu, Umut Toprak","doi":"10.1093/jee/toae282","DOIUrl":null,"url":null,"abstract":"<p><p>Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae) and Spodoptera exigua Hübner (Lepidoptera: Noctuidae) pose substantial threats to many crops, necessitating the exploration of biopesticides as potential chemical alternatives. One alternative is baculoviruses; however, their instability in the field has hindered their widespread use. Host plant phylloplane affects baculovirus activity at varying levels in different host plants. Formulation contributes significantly to optimizing the baculoviral stability on different phylloplanes against environmental conditions; however, it is expensive and difficult to make in developing or nondeveloped countries. In the current study, we developed a simple tank-mix application (MBF-Tm5) for immediate use, resembling the characteristics of a suspension concentrate formulation for Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) and Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV). We examined their biological activity against 2nd instar larvae first on an artificial diet under laboratory conditions and on eggplant and pepper phylloplane in greenhouse conditions compared to plain viruses. This formulation exhibited no significant improvement in the biological activity of both viruses on an artificial diet under laboratory conditions but significantly improved the biological activity of both viruses on both plants under greenhouse conditions. The original activity remaining (OAR%) of both unformulated and formulated viruses decreased over time under greenhouse conditions; however, the OAR value of both viruses on eggplants was significantly higher than on pepper plants. Overall, the tank-mix simple formulation of baculoviruses might be a great alternative for improved stability in nature, providing better control.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of economic entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jee/toae282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae) and Spodoptera exigua Hübner (Lepidoptera: Noctuidae) pose substantial threats to many crops, necessitating the exploration of biopesticides as potential chemical alternatives. One alternative is baculoviruses; however, their instability in the field has hindered their widespread use. Host plant phylloplane affects baculovirus activity at varying levels in different host plants. Formulation contributes significantly to optimizing the baculoviral stability on different phylloplanes against environmental conditions; however, it is expensive and difficult to make in developing or nondeveloped countries. In the current study, we developed a simple tank-mix application (MBF-Tm5) for immediate use, resembling the characteristics of a suspension concentrate formulation for Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) and Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV). We examined their biological activity against 2nd instar larvae first on an artificial diet under laboratory conditions and on eggplant and pepper phylloplane in greenhouse conditions compared to plain viruses. This formulation exhibited no significant improvement in the biological activity of both viruses on an artificial diet under laboratory conditions but significantly improved the biological activity of both viruses on both plants under greenhouse conditions. The original activity remaining (OAR%) of both unformulated and formulated viruses decreased over time under greenhouse conditions; however, the OAR value of both viruses on eggplants was significantly higher than on pepper plants. Overall, the tank-mix simple formulation of baculoviruses might be a great alternative for improved stability in nature, providing better control.