Transplantation of derivative retinal organoids from chemically induced pluripotent stem cells restored visual function.

IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING
Ning Zhao, Chang-Jun Zhang, Xiao Zhang, Wen Wang, Kangxin Jin, Zi-Bing Jin
{"title":"Transplantation of derivative retinal organoids from chemically induced pluripotent stem cells restored visual function.","authors":"Ning Zhao, Chang-Jun Zhang, Xiao Zhang, Wen Wang, Kangxin Jin, Zi-Bing Jin","doi":"10.1038/s41536-024-00387-7","DOIUrl":null,"url":null,"abstract":"<p><p>As an emerging type of pluripotent stem cells, chemically induced pluripotent stem cells (CiPSCs) avoid the risks of genomic disintegration by exogenous DNAs from viruses or plasmids, providing a safer stem cell source. To verify CiPSCs' capacity to differentiate into retinal organoids (ROs), we induced CiPSCs from mouse embryonic fibroblasts by defined small-molecule compounds and successfully differentiated the CiPSCs into three-dimensional ROs, in which all major retinal cell types and retinal genes were in concordance with those in vivo. We transplanted retinal photoreceptors from ROs into the subretinal space of retinal degeneration mouse models and the cells could integrate into the host retina, establish synaptic connections, and significantly improve the visual functions of the murine models. This proof-of-concept study for the first time demonstrated that CiPSCs could differentiate into ROs with a full spectrum of retinal cell types, and provided new insights into chemical approach-based retinal regeneration for degenerative diseases.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"9 1","pages":"42"},"PeriodicalIF":6.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-024-00387-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

As an emerging type of pluripotent stem cells, chemically induced pluripotent stem cells (CiPSCs) avoid the risks of genomic disintegration by exogenous DNAs from viruses or plasmids, providing a safer stem cell source. To verify CiPSCs' capacity to differentiate into retinal organoids (ROs), we induced CiPSCs from mouse embryonic fibroblasts by defined small-molecule compounds and successfully differentiated the CiPSCs into three-dimensional ROs, in which all major retinal cell types and retinal genes were in concordance with those in vivo. We transplanted retinal photoreceptors from ROs into the subretinal space of retinal degeneration mouse models and the cells could integrate into the host retina, establish synaptic connections, and significantly improve the visual functions of the murine models. This proof-of-concept study for the first time demonstrated that CiPSCs could differentiate into ROs with a full spectrum of retinal cell types, and provided new insights into chemical approach-based retinal regeneration for degenerative diseases.

化学诱导的多能干细胞衍生视网膜类器官移植可恢复视觉功能。
作为一种新兴的多能干细胞类型,化学诱导多能干细胞(CiPSCs)避免了来自病毒或质粒的外源性dna基因组解体的风险,提供了一种更安全的干细胞来源。为了验证CiPSCs向视网膜类器官(ROs)分化的能力,我们用确定的小分子化合物从小鼠胚胎成纤维细胞诱导CiPSCs,并成功地将其分化为三维ROs,其中所有主要的视网膜细胞类型和视网膜基因与体内的一致。我们将ROs的视网膜光感受器移植到视网膜变性小鼠模型的视网膜下间隙,细胞可以融入宿主视网膜,建立突触连接,显著改善小鼠模型的视觉功能。这项概念验证研究首次证明了CiPSCs可以分化为具有全光谱视网膜细胞类型的ROs,并为基于化学方法的视网膜再生治疗退行性疾病提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Regenerative Medicine
npj Regenerative Medicine Engineering-Biomedical Engineering
CiteScore
10.00
自引率
1.40%
发文量
71
审稿时长
12 weeks
期刊介绍: Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信