Impact of Convulsive Maternal Seizures on Fetus Dynamics

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Milan Toma, Jonathan Mayer, Molly Bekbolatova, Tim Devine, Paula Ryo
{"title":"Impact of Convulsive Maternal Seizures on Fetus Dynamics","authors":"Milan Toma,&nbsp;Jonathan Mayer,&nbsp;Molly Bekbolatova,&nbsp;Tim Devine,&nbsp;Paula Ryo","doi":"10.1002/cnm.3901","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The study findings demonstrate that the amniotic fluid plays an important role in protecting the fetus during convulsive maternal seizures. The amniotic fluid was found to be an effective buffer, significantly reducing the transfer of kinetic energy to the fetus during these events. This highlights the sufficient protection provided by the amniotic fluid in such circumstances. The research was conducted using a model that simulates the complex interactions between a pregnant woman's anatomy, the uterus, and the fetus immersed in amniotic fluid. Key parameters such as speed, acceleration, and Euler angles were captured using sensors and used as input for the computational model in the simulations. The results showed that during an oscillatory movement, which is characteristic of a maternal seizure, the fetus and placenta exhibit variable kinematics relative to the uterus. Despite these variations, the amniotic fluid was found to be a significant protective buffer. The discovery of the protective role of the amniotic fluid during maternal seizures provides valuable insights for obstetricians. It can help in managing patient care during such pregnancy complications, emphasizing the importance of the amniotic fluid in fetal protection.</p>\n </div>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3901","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The study findings demonstrate that the amniotic fluid plays an important role in protecting the fetus during convulsive maternal seizures. The amniotic fluid was found to be an effective buffer, significantly reducing the transfer of kinetic energy to the fetus during these events. This highlights the sufficient protection provided by the amniotic fluid in such circumstances. The research was conducted using a model that simulates the complex interactions between a pregnant woman's anatomy, the uterus, and the fetus immersed in amniotic fluid. Key parameters such as speed, acceleration, and Euler angles were captured using sensors and used as input for the computational model in the simulations. The results showed that during an oscillatory movement, which is characteristic of a maternal seizure, the fetus and placenta exhibit variable kinematics relative to the uterus. Despite these variations, the amniotic fluid was found to be a significant protective buffer. The discovery of the protective role of the amniotic fluid during maternal seizures provides valuable insights for obstetricians. It can help in managing patient care during such pregnancy complications, emphasizing the importance of the amniotic fluid in fetal protection.

母体惊厥性癫痫对胎儿动力学的影响。
研究结果表明,羊水在保护胎儿在母体惊厥发作的重要作用。羊水被发现是一种有效的缓冲,在这些事件中显著减少了动能向胎儿的转移。这突出了羊水在这种情况下提供的充分保护。这项研究是通过一个模型进行的,该模型模拟了孕妇的解剖结构、子宫和浸泡在羊水中的胎儿之间复杂的相互作用。关键参数如速度、加速度和欧拉角被传感器捕获,并作为模拟计算模型的输入。结果表明,在振荡运动中,这是母亲癫痫发作的特征,胎儿和胎盘相对于子宫表现出可变的运动学。尽管这些差异,羊水被发现是一个重要的保护缓冲。羊水在母体癫痫发作期间的保护作用的发现为产科医生提供了宝贵的见解。它可以帮助管理患者护理在这种妊娠并发症,强调胎儿保护羊水的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信