{"title":"Novel function of Hox13 in regulating outgrowth of the newt hindlimb bud through interaction with Fgf10 and Tbx4.","authors":"Sayo Tozawa, Haruka Matsubara, Fumina Minamitani, Yasuhiro Kamei, Misako Saida, Momoko Asao, Ken-Ichi T Suzuki, Masatoshi Matsunami, Shuji Shigenobu, Toshinori Hayashi, Gembu Abe, Takashi Takeuchi","doi":"10.1111/dgd.12952","DOIUrl":null,"url":null,"abstract":"<p><p>5'Hox genes regulate pattern formation along the axes of the limb. Previously, we showed that Hoxa13/Hoxd13 double-mutant newts lacked all digits of the forelimbs during development and regeneration, showing that newt Hox13 is necessary for digit formation in development and regeneration. In addition, we found another unique phenotype. Some of the Hox13 crispant newts showed hindlimb defects, in which whole or almost whole hindlimbs were lost, suggesting a novel function of Hox13 in limb development. Using germline mutants, we showed that mutation in Hox13 led to hindlimb defects. The limb buds of Hox13 crispants formed, however, did not show outgrowth. Expression of Fgf10 and Tbx4, which are involved in limb outgrowth, decreased in the hindlimb buds of Hox13 crispants. In addition, hindlimb defects were observed in both Fgf10 and Tbx4 crispant newts. Finally, Fgf10 and Tbx4 interacted with Hox13 genetically. Our results revealed a novel function of Hox13 in regulating the outgrowth of the newt hindlimb bud through interaction with Fgf10 and Tbx4.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":" ","pages":"10-22"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Growth & Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/dgd.12952","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
5'Hox genes regulate pattern formation along the axes of the limb. Previously, we showed that Hoxa13/Hoxd13 double-mutant newts lacked all digits of the forelimbs during development and regeneration, showing that newt Hox13 is necessary for digit formation in development and regeneration. In addition, we found another unique phenotype. Some of the Hox13 crispant newts showed hindlimb defects, in which whole or almost whole hindlimbs were lost, suggesting a novel function of Hox13 in limb development. Using germline mutants, we showed that mutation in Hox13 led to hindlimb defects. The limb buds of Hox13 crispants formed, however, did not show outgrowth. Expression of Fgf10 and Tbx4, which are involved in limb outgrowth, decreased in the hindlimb buds of Hox13 crispants. In addition, hindlimb defects were observed in both Fgf10 and Tbx4 crispant newts. Finally, Fgf10 and Tbx4 interacted with Hox13 genetically. Our results revealed a novel function of Hox13 in regulating the outgrowth of the newt hindlimb bud through interaction with Fgf10 and Tbx4.
期刊介绍:
Development Growth & Differentiation (DGD) publishes three types of articles: original, resource, and review papers.
Original papers are on any subjects having a context in development, growth, and differentiation processes in animals, plants, and microorganisms, dealing with molecular, genetic, cellular and organismal phenomena including metamorphosis and regeneration, while using experimental, theoretical, and bioinformatic approaches. Papers on other related fields are also welcome, such as stem cell biology, genomics, neuroscience, Evodevo, Ecodevo, and medical science as well as related methodology (new or revised techniques) and bioresources.
Resource papers describe a dataset, such as whole genome sequences and expressed sequence tags (ESTs), with some biological insights, which should be valuable for studying the subjects as mentioned above.
Submission of review papers is also encouraged, especially those providing a new scope based on the authors’ own study, or a summarization of their study series.