Xiao Zhao , Huijuan Wang , Dian Xu, Junzuo Fu, Hong Wang
{"title":"Trichostatin A reverses rocuronium resistance in burn-injured rats","authors":"Xiao Zhao , Huijuan Wang , Dian Xu, Junzuo Fu, Hong Wang","doi":"10.1016/j.burns.2024.107351","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>This study aimed to investigate whether the histone deacetylase HDAC4 inhibitor, trichostatin A (TSA), could reverse resistance to non-depolarizing muscle relaxants (NDMRs) caused by burn injuries.</div></div><div><h3>Materials and methods</h3><div>A rat burn injury model was established, in which TSA was administered to inhibit HDAC4 expression. The potency of rocuronium was assessed through tension tests, and the levels of HDAC4 and myogenin proteins were determined using Western blot. Additionally, siRNA was utilized to explore the effects of HDAC4 knockdown on rocuronium potency and protein expression.</div></div><div><h3>Results</h3><div>The burn injuries increased the IC<sub>50</sub> of rocuronium, which was reversed by TSA treatment. Furthermore, HDAC4 and myogenin protein expression levels were increased significantly in burned legs, a phenomenon that TSA effectively counteracted. HDAC4 knockdown decreased rocuronium IC<sub>50</sub> and lowered HDAC4 and myogenin protein expression in the subsequent burn injuries.</div></div><div><h3>Conclusion</h3><div>The HDAC4 inhibitor TSA has the ability to mitigate NDMR resistance in skeletal muscle via the HDAC4-myogenin pathway after burn injuries.</div></div>","PeriodicalId":50717,"journal":{"name":"Burns","volume":"51 2","pages":"Article 107351"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305417924003917","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
This study aimed to investigate whether the histone deacetylase HDAC4 inhibitor, trichostatin A (TSA), could reverse resistance to non-depolarizing muscle relaxants (NDMRs) caused by burn injuries.
Materials and methods
A rat burn injury model was established, in which TSA was administered to inhibit HDAC4 expression. The potency of rocuronium was assessed through tension tests, and the levels of HDAC4 and myogenin proteins were determined using Western blot. Additionally, siRNA was utilized to explore the effects of HDAC4 knockdown on rocuronium potency and protein expression.
Results
The burn injuries increased the IC50 of rocuronium, which was reversed by TSA treatment. Furthermore, HDAC4 and myogenin protein expression levels were increased significantly in burned legs, a phenomenon that TSA effectively counteracted. HDAC4 knockdown decreased rocuronium IC50 and lowered HDAC4 and myogenin protein expression in the subsequent burn injuries.
Conclusion
The HDAC4 inhibitor TSA has the ability to mitigate NDMR resistance in skeletal muscle via the HDAC4-myogenin pathway after burn injuries.
期刊介绍:
Burns aims to foster the exchange of information among all engaged in preventing and treating the effects of burns. The journal focuses on clinical, scientific and social aspects of these injuries and covers the prevention of the injury, the epidemiology of such injuries and all aspects of treatment including development of new techniques and technologies and verification of existing ones. Regular features include clinical and scientific papers, state of the art reviews and descriptions of burn-care in practice.
Topics covered by Burns include: the effects of smoke on man and animals, their tissues and cells; the responses to and treatment of patients and animals with chemical injuries to the skin; the biological and clinical effects of cold injuries; surgical techniques which are, or may be relevant to the treatment of burned patients during the acute or reconstructive phase following injury; well controlled laboratory studies of the effectiveness of anti-microbial agents on infection and new materials on scarring and healing; inflammatory responses to injury, effectiveness of related agents and other compounds used to modify the physiological and cellular responses to the injury; experimental studies of burns and the outcome of burn wound healing; regenerative medicine concerning the skin.