Inhibitory KIRs decrease HLA class II-mediated protection in Type 1 Diabetes.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
Laura Mora-Bitria, Bisrat J Debebe, Kelly L Miners, Kristin Ladell, Charandeep Kaur, James A Traherne, Wei Jiang, David A Price, Linda Hadcocks, Nicholas A R McQuibban, John Trowsdale, F Susan Wong, Nikolas Pontikos, Christoph Niederalt, Becca Asquith
{"title":"Inhibitory KIRs decrease HLA class II-mediated protection in Type 1 Diabetes.","authors":"Laura Mora-Bitria, Bisrat J Debebe, Kelly L Miners, Kristin Ladell, Charandeep Kaur, James A Traherne, Wei Jiang, David A Price, Linda Hadcocks, Nicholas A R McQuibban, John Trowsdale, F Susan Wong, Nikolas Pontikos, Christoph Niederalt, Becca Asquith","doi":"10.1371/journal.pgen.1011456","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibitory killer cell immunoglobulin-like receptors (iKIRs) are a family of inhibitory receptors that are expressed by natural killer (NK) cells and late-stage differentiated T cells. There is accumulating evidence that iKIRs regulate T cell-mediated immunity. Recently, we reported that T cell-mediated control was enhanced by iKIRs in chronic viral infections. We hypothesized that in the context of autoimmunity, where an enhanced T cell response might be considered detrimental, iKIRs would have an opposite effect. We studied Type 1 diabetes (T1D) as a paradigmatic example of autoimmunity. In T1D, variation in the Human Leucocyte Antigen (HLA) genes explains up to 50% of the genetic risk, indicating that T cells have a major role in T1D etiopathogenesis. To investigate if iKIRs affect this T cell response we asked whether HLA associations were modified by iKIR genes. We conducted an immunogenetic analysis of a case-control T1D dataset (N = 11,961) and found that iKIR genes, in the presence of genes encoding their ligands, have a consistent and significant effect on protective HLA class II genetic associations. Our results were validated in an independent data set. We conclude that iKIRs significantly decrease HLA class II protective associations and suggest that iKIRs regulate CD4+ T cell responses in T1D.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 12","pages":"e1011456"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011456","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Inhibitory killer cell immunoglobulin-like receptors (iKIRs) are a family of inhibitory receptors that are expressed by natural killer (NK) cells and late-stage differentiated T cells. There is accumulating evidence that iKIRs regulate T cell-mediated immunity. Recently, we reported that T cell-mediated control was enhanced by iKIRs in chronic viral infections. We hypothesized that in the context of autoimmunity, where an enhanced T cell response might be considered detrimental, iKIRs would have an opposite effect. We studied Type 1 diabetes (T1D) as a paradigmatic example of autoimmunity. In T1D, variation in the Human Leucocyte Antigen (HLA) genes explains up to 50% of the genetic risk, indicating that T cells have a major role in T1D etiopathogenesis. To investigate if iKIRs affect this T cell response we asked whether HLA associations were modified by iKIR genes. We conducted an immunogenetic analysis of a case-control T1D dataset (N = 11,961) and found that iKIR genes, in the presence of genes encoding their ligands, have a consistent and significant effect on protective HLA class II genetic associations. Our results were validated in an independent data set. We conclude that iKIRs significantly decrease HLA class II protective associations and suggest that iKIRs regulate CD4+ T cell responses in T1D.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信