Thenmozhi Rajarathinam, Sivaguru Jayaraman, Chang-Seok Kim, Jaewon Lee, Seung-Cheol Chang
{"title":"Portable Amperometric Biosensor Enhanced with Enzyme-Ternary Nanocomposites for Prostate Cancer Biomarker Detection.","authors":"Thenmozhi Rajarathinam, Sivaguru Jayaraman, Chang-Seok Kim, Jaewon Lee, Seung-Cheol Chang","doi":"10.3390/bios14120623","DOIUrl":null,"url":null,"abstract":"<p><p>Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, rapid Sar screening biosensors are relatively challenging and have rarely been reported. Therefore, highly sensitive and selective amperometric biosensors that enable real-time measurements within <1.0 min are needed. To achieve this, a chitosan-polyaniline polymer nanocomposite (CS-PANI NC), a carrier for dispersing mesoporous carbon (MC), was synthesized and modified on a screen-printed carbon electrode (SPCE) to detect hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). The sarcosine oxidase (SOx) enzyme-immobilized CS-PANI-MC-2 ternary NCs were referred to as supramolecular architectures (SMAs). The excellent electron transfer ability of the SMA-modified SPCE (SMA/SPCE) sensor enabled highly sensitive H<sub>2</sub>O<sub>2</sub> detection for immediate trace Sar biomarker detection. Therefore, the system included an SMA/SPCE coupled to a portable potentiostat linked to a smartphone for data acquisition. The high catalytic activity, porous architecture, and sufficient biocompatibility of CS-PANI-MC ternary NCs enabled bioactivity retention and immobilized SOx stability. The fabricated biosensor exhibited a detection limit of 0.077 μM and sensitivity of 8.09 μA mM<sup>-1</sup> cm<sup>-2</sup> toward Sar, demonstrating great potential for use in rapid PCa screening.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 12","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14120623","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, rapid Sar screening biosensors are relatively challenging and have rarely been reported. Therefore, highly sensitive and selective amperometric biosensors that enable real-time measurements within <1.0 min are needed. To achieve this, a chitosan-polyaniline polymer nanocomposite (CS-PANI NC), a carrier for dispersing mesoporous carbon (MC), was synthesized and modified on a screen-printed carbon electrode (SPCE) to detect hydrogen peroxide (H2O2). The sarcosine oxidase (SOx) enzyme-immobilized CS-PANI-MC-2 ternary NCs were referred to as supramolecular architectures (SMAs). The excellent electron transfer ability of the SMA-modified SPCE (SMA/SPCE) sensor enabled highly sensitive H2O2 detection for immediate trace Sar biomarker detection. Therefore, the system included an SMA/SPCE coupled to a portable potentiostat linked to a smartphone for data acquisition. The high catalytic activity, porous architecture, and sufficient biocompatibility of CS-PANI-MC ternary NCs enabled bioactivity retention and immobilized SOx stability. The fabricated biosensor exhibited a detection limit of 0.077 μM and sensitivity of 8.09 μA mM-1 cm-2 toward Sar, demonstrating great potential for use in rapid PCa screening.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.