Safa Melki, Emma Ferrari, Raja Ben Ahmed, Antonietta Spagnuolo, Ilaria Corsi
{"title":"Single but Not Combined In Vitro Exposure to Bisphenol A and Nanoplastics Affects the Cholinergic Function of the Ascidian <i>Ciona robusta</i>.","authors":"Safa Melki, Emma Ferrari, Raja Ben Ahmed, Antonietta Spagnuolo, Ilaria Corsi","doi":"10.3390/jox14040103","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoplastics are known to represent a threat to marine ecosystems. Their combination with other contaminants of emerging concerns (CECs) may amplify ecotoxic effects, with unknown impacts on marine biodiversity. This study investigates the effects, single and combined, of bisphenol A (BPA)-one of the most hazardous CECs-and polystyrene nanoparticles (PS NPs)-as a proxy for nanoplastics, being among the most commonly found asmarine debris-on cholinesterase (ChE) activities of the ascidian <i>Ciona robusta</i>. ChE activity was first measured in the siphons, tunic, and viscera of wild-caught adult specimens and exposed in vitro to BPA (0.01, 0.21, 0.69 mM) and PS NPs (0.0096-0.096 mM; 8.096 × 10<sup>9</sup>-10<sup>10</sup> particles, respectively) alone and combined for 15 min of incubation. PS NPs' behavior in milliQ water and in the ChE assay reaction buffer was characterized alone, combined with BPA, and analyzed through ζ-potential measurements via Dynamic Light Scattering. The results revealed that ChE activity was predominant in the viscera and siphons of <i>C. robusta</i>; PS NPs did not affect the ChE activity alone or combined, while BPA caused a concentration-dependent inhibition of ChE activity in the viscera. No changes in ζ-potential were observed for PS NPs alone or combined with BPA in the ChE buffer, suggesting no interaction. Further investigations are needed to understand the potential neurotoxic consequences for <i>C. robusta</i> and ecological risk scenarios due to exposure to BPA and nanoplastics in marine coastal waters.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 4","pages":"1930-1940"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox14040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoplastics are known to represent a threat to marine ecosystems. Their combination with other contaminants of emerging concerns (CECs) may amplify ecotoxic effects, with unknown impacts on marine biodiversity. This study investigates the effects, single and combined, of bisphenol A (BPA)-one of the most hazardous CECs-and polystyrene nanoparticles (PS NPs)-as a proxy for nanoplastics, being among the most commonly found asmarine debris-on cholinesterase (ChE) activities of the ascidian Ciona robusta. ChE activity was first measured in the siphons, tunic, and viscera of wild-caught adult specimens and exposed in vitro to BPA (0.01, 0.21, 0.69 mM) and PS NPs (0.0096-0.096 mM; 8.096 × 109-1010 particles, respectively) alone and combined for 15 min of incubation. PS NPs' behavior in milliQ water and in the ChE assay reaction buffer was characterized alone, combined with BPA, and analyzed through ζ-potential measurements via Dynamic Light Scattering. The results revealed that ChE activity was predominant in the viscera and siphons of C. robusta; PS NPs did not affect the ChE activity alone or combined, while BPA caused a concentration-dependent inhibition of ChE activity in the viscera. No changes in ζ-potential were observed for PS NPs alone or combined with BPA in the ChE buffer, suggesting no interaction. Further investigations are needed to understand the potential neurotoxic consequences for C. robusta and ecological risk scenarios due to exposure to BPA and nanoplastics in marine coastal waters.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.