Overview of Computational Toxicology Methods Applied in Drug and Green Chemical Discovery.

IF 6.8 Q1 TOXICOLOGY
Jose I Bueso-Bordils, Gerardo M Antón-Fos, Rafael Martín-Algarra, Pedro A Alemán-López
{"title":"Overview of Computational Toxicology Methods Applied in Drug and Green Chemical Discovery.","authors":"Jose I Bueso-Bordils, Gerardo M Antón-Fos, Rafael Martín-Algarra, Pedro A Alemán-López","doi":"10.3390/jox14040101","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of computational chemistry, computer models are quickly and cheaply constructed to predict toxicology hazards and results, with no need for test material or animals as these computational predictions are often based on physicochemical properties of chemical structures. Multiple methodologies are employed to support in silico assessments based on machine learning (ML) and deep learning (DL). This review introduces the development of computational toxicology, focusing on ML and DL and emphasizing their importance in the field of toxicology. A fine balance between target potency, selectivity, absorption, distribution, metabolism, excretion, toxicity (ADMET) and clinical safety properties should be achieved to discover a potential new drug. It is advantageous to perform virtual predictions as early as possible in drug development processes, even before a molecule is synthesized. Currently, there are numerous commercially available and free web-based programs for toxicity prediction, which can be used to construct various predictive models. The key features of the QSAR method are also outlined, and the selection of appropriate physicochemical descriptors is a prerequisite for robust predictions. In addition, examples of open-source tools applied to toxicity prediction are included, as well as examples of the application of different computational methods for the prediction of toxicity in drug design and environmental toxicology.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 4","pages":"1901-1918"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677645/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox14040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of computational chemistry, computer models are quickly and cheaply constructed to predict toxicology hazards and results, with no need for test material or animals as these computational predictions are often based on physicochemical properties of chemical structures. Multiple methodologies are employed to support in silico assessments based on machine learning (ML) and deep learning (DL). This review introduces the development of computational toxicology, focusing on ML and DL and emphasizing their importance in the field of toxicology. A fine balance between target potency, selectivity, absorption, distribution, metabolism, excretion, toxicity (ADMET) and clinical safety properties should be achieved to discover a potential new drug. It is advantageous to perform virtual predictions as early as possible in drug development processes, even before a molecule is synthesized. Currently, there are numerous commercially available and free web-based programs for toxicity prediction, which can be used to construct various predictive models. The key features of the QSAR method are also outlined, and the selection of appropriate physicochemical descriptors is a prerequisite for robust predictions. In addition, examples of open-source tools applied to toxicity prediction are included, as well as examples of the application of different computational methods for the prediction of toxicity in drug design and environmental toxicology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
1.70%
发文量
21
审稿时长
10 weeks
期刊介绍: The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信