Jose I Bueso-Bordils, Gerardo M Antón-Fos, Rafael Martín-Algarra, Pedro A Alemán-López
{"title":"Overview of Computational Toxicology Methods Applied in Drug and Green Chemical Discovery.","authors":"Jose I Bueso-Bordils, Gerardo M Antón-Fos, Rafael Martín-Algarra, Pedro A Alemán-López","doi":"10.3390/jox14040101","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of computational chemistry, computer models are quickly and cheaply constructed to predict toxicology hazards and results, with no need for test material or animals as these computational predictions are often based on physicochemical properties of chemical structures. Multiple methodologies are employed to support in silico assessments based on machine learning (ML) and deep learning (DL). This review introduces the development of computational toxicology, focusing on ML and DL and emphasizing their importance in the field of toxicology. A fine balance between target potency, selectivity, absorption, distribution, metabolism, excretion, toxicity (ADMET) and clinical safety properties should be achieved to discover a potential new drug. It is advantageous to perform virtual predictions as early as possible in drug development processes, even before a molecule is synthesized. Currently, there are numerous commercially available and free web-based programs for toxicity prediction, which can be used to construct various predictive models. The key features of the QSAR method are also outlined, and the selection of appropriate physicochemical descriptors is a prerequisite for robust predictions. In addition, examples of open-source tools applied to toxicity prediction are included, as well as examples of the application of different computational methods for the prediction of toxicity in drug design and environmental toxicology.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 4","pages":"1901-1918"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677645/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox14040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of computational chemistry, computer models are quickly and cheaply constructed to predict toxicology hazards and results, with no need for test material or animals as these computational predictions are often based on physicochemical properties of chemical structures. Multiple methodologies are employed to support in silico assessments based on machine learning (ML) and deep learning (DL). This review introduces the development of computational toxicology, focusing on ML and DL and emphasizing their importance in the field of toxicology. A fine balance between target potency, selectivity, absorption, distribution, metabolism, excretion, toxicity (ADMET) and clinical safety properties should be achieved to discover a potential new drug. It is advantageous to perform virtual predictions as early as possible in drug development processes, even before a molecule is synthesized. Currently, there are numerous commercially available and free web-based programs for toxicity prediction, which can be used to construct various predictive models. The key features of the QSAR method are also outlined, and the selection of appropriate physicochemical descriptors is a prerequisite for robust predictions. In addition, examples of open-source tools applied to toxicity prediction are included, as well as examples of the application of different computational methods for the prediction of toxicity in drug design and environmental toxicology.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.