Photosensitizing Activity of Nanoparticles of Poly (2-amino phenol)/Gold for Intensified Doxorubicin Therapeutic Effect on Melanoma Cancer Cells under Synergism Effect of 808-nm Light.

Q3 Medicine
Naghmeh Sattarahmady, Zahra Kayani, Hossein Heli, Parsa Faghani-Eskandarkolaei, Hanieh Haghighi
{"title":"Photosensitizing Activity of Nanoparticles of Poly (2-amino phenol)/Gold for Intensified Doxorubicin Therapeutic Effect on Melanoma Cancer Cells under Synergism Effect of 808-nm Light.","authors":"Naghmeh Sattarahmady, Zahra Kayani, Hossein Heli, Parsa Faghani-Eskandarkolaei, Hanieh Haghighi","doi":"10.31661/jbpe.v0i0.2312-1693","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Photothermal therapy (PTT) is one of the effective and non-invasive strategies which hold great promise for improving the treatment of cancer cells. PTT is based on activating a photosensitizer by infrared light irradiation and producing heat and reactive species and apoptosis in the tumor area.</p><p><strong>Objective: </strong>The aim of this study was to investigate the effect of photothermal/chemotherapy on melanoma cancer cells using poly (2-amino phenol)/gold (P2AO/AuNPs) and doxorubicin (DOX).</p><p><strong>Material and methods: </strong>In this experimental study, nanoparticles of P2AO/AuNPs were synthesized, and their mixture with DOX was applied as a photosensitizer for photothermal/chemotherapy of a C540 (B16-F10) melanoma cell line.</p><p><strong>Results: </strong>P2AO/AuNPs generated heat and cytotoxic responsive oxygen species (ROS) upon 808-nm light irradiation with simultaneous intensifying DOX therapeutic effect under domination of synergism effects between light irradiation, P2AO/AuNPs, and doxorubicin. Cell treatment with both P2AO/AuNPs and DOX resulted in a considerable increase in necroptotic cells to 61% with a significant decrease in the living cells (39%).</p><p><strong>Conclusion: </strong>P2AO/AuNPs provided a platform for light absorption and intensifying DOX therapeutic effect. This study approved the applicability of a new photothermal/chemotherapy by domination of synergistic effects attained by combination of laser light, P2AO, AuNPs, and DOX.</p>","PeriodicalId":38035,"journal":{"name":"Journal of Biomedical Physics and Engineering","volume":"14 6","pages":"547-560"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668927/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31661/jbpe.v0i0.2312-1693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Photothermal therapy (PTT) is one of the effective and non-invasive strategies which hold great promise for improving the treatment of cancer cells. PTT is based on activating a photosensitizer by infrared light irradiation and producing heat and reactive species and apoptosis in the tumor area.

Objective: The aim of this study was to investigate the effect of photothermal/chemotherapy on melanoma cancer cells using poly (2-amino phenol)/gold (P2AO/AuNPs) and doxorubicin (DOX).

Material and methods: In this experimental study, nanoparticles of P2AO/AuNPs were synthesized, and their mixture with DOX was applied as a photosensitizer for photothermal/chemotherapy of a C540 (B16-F10) melanoma cell line.

Results: P2AO/AuNPs generated heat and cytotoxic responsive oxygen species (ROS) upon 808-nm light irradiation with simultaneous intensifying DOX therapeutic effect under domination of synergism effects between light irradiation, P2AO/AuNPs, and doxorubicin. Cell treatment with both P2AO/AuNPs and DOX resulted in a considerable increase in necroptotic cells to 61% with a significant decrease in the living cells (39%).

Conclusion: P2AO/AuNPs provided a platform for light absorption and intensifying DOX therapeutic effect. This study approved the applicability of a new photothermal/chemotherapy by domination of synergistic effects attained by combination of laser light, P2AO, AuNPs, and DOX.

808 nm光协同作用下聚(2-氨基酚)/金纳米颗粒增强阿霉素治疗黑色素瘤癌细胞的光敏活性
背景:光热疗法(PTT)是一种有效的、非侵入性的治疗方法,有望改善肿瘤细胞的治疗。PTT的基础是通过红外光照射激活光敏剂,在肿瘤区域产生热量和活性物质和细胞凋亡。目的:探讨聚(2-氨基酚)/金(P2AO/AuNPs)和多柔比星(DOX)光热/化疗对黑色素瘤癌细胞的影响。材料与方法:本实验研究合成了P2AO/AuNPs纳米颗粒,并将其与DOX混合作为光敏剂应用于C540 (B16-F10)黑色素瘤细胞系的光热/化疗。结果:在808 nm光照射下,P2AO/AuNPs在光照射、P2AO/AuNPs和阿霉素的协同作用下,产生热量和细胞毒性反应氧(ROS),同时增强DOX的治疗效果。用P2AO/AuNPs和DOX处理细胞导致坏死细胞显著增加至61%,而活细胞显著减少(39%)。结论:P2AO/AuNPs为光吸收提供平台,增强DOX的治疗效果。这项研究通过激光、P2AO、AuNPs和DOX联合获得的协同效应,证实了一种新的光热/化疗的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Physics and Engineering
Journal of Biomedical Physics and Engineering Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.90
自引率
0.00%
发文量
64
审稿时长
10 weeks
期刊介绍: The Journal of Biomedical Physics and Engineering (JBPE) is a bimonthly peer-reviewed English-language journal that publishes high-quality basic sciences and clinical research (experimental or theoretical) broadly concerned with the relationship of physics to medicine and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信