Liumei Teng, Weizao Liu, Xu Duan, Zhuo Li, Cai Chen, Zhenghao Wang, Jian Yang, Qingcai Liu
{"title":"Targeted metals extraction from spent LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> batteries via thermochemical-induced sulfation roasting: Thermodynamics & kinetics.","authors":"Liumei Teng, Weizao Liu, Xu Duan, Zhuo Li, Cai Chen, Zhenghao Wang, Jian Yang, Qingcai Liu","doi":"10.1016/j.wasman.2024.12.025","DOIUrl":null,"url":null,"abstract":"<p><p>To alleviate the energy crisis and control environmental pollution raised by spent lithium-ion batteries (LIBs), the development of efficient and economic methods for their recycling is crucial for sustainable development of new energy industry. Herein, a combined pyro - hydrometallurgical process was adopted for recovery of valuable metal elements for spent LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> (NCM523). Different from conventional pyrometallurgical methods with high temperature and energy consumption, the NH<sub>4</sub>HSO<sub>4</sub> roasting strategy works at 400 °C and achieves remarkable leaching efficiencies of Li, Co, Mn, and Ni achieved 97.5 %, 91.4 %, 91.3 %, and 95.50 %, respectively. Under the ideal conditions, abundant water-soluble metal-ammine-sulfates and metal-sulfates were revolved from NCM523. The process factors, including sulfation-roasting temperature, reagent mass ratio, roasting time, are intensively studied. Furthermore, a plausible reaction mechanism was deeply investigated with assistance of macro-micro scale, thermodynamic and kinetic analysis. Wherein, the Li of the NCM523 first react sufficiently with NH<sub>4</sub>HSO<sub>4</sub> owing to higher thermodynamic/kinetic motivation at the primary stage during the sulfation-roasting procedure. Subsequently, the transition metal (Ni, Co, and Mn) from the lithium-depleted NCM523 would revolve to corresponding metal-ammine-sulfates or metal sulfates, and their sulfation-roasting kinetics conformed to the unreacted nuclear model. This study proposed an alternative green route of low energy consumption and acid-free procedure for recovering spent NCM batteries, which is conducive to industrial-scale recycling of waste LIBs in the future.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"430-442"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.12.025","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
To alleviate the energy crisis and control environmental pollution raised by spent lithium-ion batteries (LIBs), the development of efficient and economic methods for their recycling is crucial for sustainable development of new energy industry. Herein, a combined pyro - hydrometallurgical process was adopted for recovery of valuable metal elements for spent LiNi0.5Co0.2Mn0.3O2 (NCM523). Different from conventional pyrometallurgical methods with high temperature and energy consumption, the NH4HSO4 roasting strategy works at 400 °C and achieves remarkable leaching efficiencies of Li, Co, Mn, and Ni achieved 97.5 %, 91.4 %, 91.3 %, and 95.50 %, respectively. Under the ideal conditions, abundant water-soluble metal-ammine-sulfates and metal-sulfates were revolved from NCM523. The process factors, including sulfation-roasting temperature, reagent mass ratio, roasting time, are intensively studied. Furthermore, a plausible reaction mechanism was deeply investigated with assistance of macro-micro scale, thermodynamic and kinetic analysis. Wherein, the Li of the NCM523 first react sufficiently with NH4HSO4 owing to higher thermodynamic/kinetic motivation at the primary stage during the sulfation-roasting procedure. Subsequently, the transition metal (Ni, Co, and Mn) from the lithium-depleted NCM523 would revolve to corresponding metal-ammine-sulfates or metal sulfates, and their sulfation-roasting kinetics conformed to the unreacted nuclear model. This study proposed an alternative green route of low energy consumption and acid-free procedure for recovering spent NCM batteries, which is conducive to industrial-scale recycling of waste LIBs in the future.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)