[Effect of exogenous paclobutrazol on the drought resistance of Phoebe bournei seedlings under drought stress].

Q3 Environmental Science
Yan-Yan Song, Pei-Yue Xu, Gong-Xiu He, Kong-Fei Hu, Li Ji, Li-Li Yang, Hong-Gang Sun, Xie Zhang
{"title":"[Effect of exogenous paclobutrazol on the drought resistance of <i>Phoebe bournei</i> seedlings under drought stress].","authors":"Yan-Yan Song, Pei-Yue Xu, Gong-Xiu He, Kong-Fei Hu, Li Ji, Li-Li Yang, Hong-Gang Sun, Xie Zhang","doi":"10.13287/j.1001-9332.202410.007","DOIUrl":null,"url":null,"abstract":"<p><p>To clarify the response mechanism of exogenous paclobutrazol on drought resistance in <i>Phoebe bournei</i> seedlings, we investigated the effects of spraying different concentrations of paclobutrazol (25, 50, 100 mg·L<sup>-1</sup>) on the photosynthetic and antioxidant systems of 2-year-old <i>P. bournei</i> seedlings under drought stress using natural drought method. The results showed that drought stress significantly reduced the photosynthesis and broke the dynamic balance of antioxidant system in <i>P. bournei</i> seedlings. Spraying with different concentrations of paclobutrazol effectively alleviated the negative impacts of drought stress, and enhanced the defense capability of photosynthetic and antioxidant systems, with the 100 mg·L<sup>-1</sup> paclobutrazol treatment being the most effective. Under exogenous 100 mg·L<sup>-1</sup> paclobutrazol treatment, the total chlorophyll in leaves increased significantly, with a maximum increase of 51.9%. The apparent photosynthetic electron transfer rate, photochemical quenching coefficient and actual photochemical quantum yield were significantly increased, with maximum increase of 67.8%, 58.4%, and 59.7%, respectively. The net photosynthetic rate, stomatal conductance and transpiration rate, were enhanced, reaching maximum increase of 65.5%, 65.4%, and 68.6%, respectively. In summary, exogenous 100 mg·L<sup>-1</sup>paclobutrazol has the strongest ability to enhance drought resistance of <i>P. bournei</i> seedlings by regulating photosynthetic and antioxidant systems.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 10","pages":"2667-2676"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用生态学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13287/j.1001-9332.202410.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

To clarify the response mechanism of exogenous paclobutrazol on drought resistance in Phoebe bournei seedlings, we investigated the effects of spraying different concentrations of paclobutrazol (25, 50, 100 mg·L-1) on the photosynthetic and antioxidant systems of 2-year-old P. bournei seedlings under drought stress using natural drought method. The results showed that drought stress significantly reduced the photosynthesis and broke the dynamic balance of antioxidant system in P. bournei seedlings. Spraying with different concentrations of paclobutrazol effectively alleviated the negative impacts of drought stress, and enhanced the defense capability of photosynthetic and antioxidant systems, with the 100 mg·L-1 paclobutrazol treatment being the most effective. Under exogenous 100 mg·L-1 paclobutrazol treatment, the total chlorophyll in leaves increased significantly, with a maximum increase of 51.9%. The apparent photosynthetic electron transfer rate, photochemical quenching coefficient and actual photochemical quantum yield were significantly increased, with maximum increase of 67.8%, 58.4%, and 59.7%, respectively. The net photosynthetic rate, stomatal conductance and transpiration rate, were enhanced, reaching maximum increase of 65.5%, 65.4%, and 68.6%, respectively. In summary, exogenous 100 mg·L-1paclobutrazol has the strongest ability to enhance drought resistance of P. bournei seedlings by regulating photosynthetic and antioxidant systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
应用生态学报
应用生态学报 Environmental Science-Ecology
CiteScore
2.50
自引率
0.00%
发文量
11393
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信