Comparison of X-Ray Attenuation Performance, Antimicrobial Properties, and Cytotoxicity of Silicone-Based Matrices Containing Bi2O3, PbO, or Bi2O3/PbO Nanoparticles.
{"title":"Comparison of X-Ray Attenuation Performance, Antimicrobial Properties, and Cytotoxicity of Silicone-Based Matrices Containing Bi<sub>2</sub>O<sub>3</sub>, PbO, or Bi<sub>2</sub>O<sub>3</sub>/PbO Nanoparticles.","authors":"Baharak Divband, Zahraa Haleem Al-Qaim, Falah H Hussein, Davood Khezerloo, Nahideh Gharehaghaji","doi":"10.31661/jbpe.v0i0.2403-1736","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Application of the nanomaterials to preparing X-ray shields and successfully treating multiresistant microorganisms has attracted great attention in modern life.</p><p><strong>Objective: </strong>This study aimed to prepare flexible silicone-based matrices containing Bi<sub>2</sub>O<sub>3</sub>, PbO, or Bi<sub>2</sub>O<sub>3</sub>/PbO nanoparticles and select a cost-effective, cytocompatible, and antibacterial/antifungal X-ray shield in clinical radiography.</p><p><strong>Material and methods: </strong>In this experimental study, we prepared the nanoparticles by the modified biosynthesis method and fabricated the X-ray shields containing 20 wt% of the nanoparticles. The X-ray attenuation percentage and Half Value Layer (HVL) of the shields were investigated for the photon energies in the range of 40-100 kVp in clinical radiography. The antibacterial/antifungal activities of the shields were evaluated using a colony count method for the gram-negative (<i>Escherichia coli</i>), and gram-positive (<i>Enterococcus faecalis</i>) bacteria, and Candida albicans fungus. The shield toxicity was investigated on A549 cells.</p><p><strong>Results: </strong>The highest X-ray attenuation percentage and the lowest HVL were obtained using the shield containing Bi<sub>2</sub>O<sub>3</sub> nanoparticles. Although all shields displayed antimicrobial activity, the shield containing Bi<sub>2</sub>O<sub>3</sub>/PbO nanoparticles showed the most effective reduction in the colony counts. Both X-ray shields containing nano Bi<sub>2</sub>O<sub>3</sub> and Bi<sub>2</sub>O<sub>3</sub>/PbO demonstrated high cytocompatibility on A549 cells at a concentration as high as 500 µg/ml. The shield with PbO nanoparticles was also cytocompatible at a concentration of 50 µg/ml.</p><p><strong>Conclusion: </strong>The best X-ray attenuation performance is attributed to the silicone-based matrix with nano Bi<sub>2</sub>O<sub>3</sub>; however, the flexible shield with Bi<sub>2</sub>O<sub>3</sub>/PbO nanoparticles can be cost-effective and cytocompatible with the best antibacterial/antifungal properties.</p>","PeriodicalId":38035,"journal":{"name":"Journal of Biomedical Physics and Engineering","volume":"14 6","pages":"533-546"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31661/jbpe.v0i0.2403-1736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Application of the nanomaterials to preparing X-ray shields and successfully treating multiresistant microorganisms has attracted great attention in modern life.
Objective: This study aimed to prepare flexible silicone-based matrices containing Bi2O3, PbO, or Bi2O3/PbO nanoparticles and select a cost-effective, cytocompatible, and antibacterial/antifungal X-ray shield in clinical radiography.
Material and methods: In this experimental study, we prepared the nanoparticles by the modified biosynthesis method and fabricated the X-ray shields containing 20 wt% of the nanoparticles. The X-ray attenuation percentage and Half Value Layer (HVL) of the shields were investigated for the photon energies in the range of 40-100 kVp in clinical radiography. The antibacterial/antifungal activities of the shields were evaluated using a colony count method for the gram-negative (Escherichia coli), and gram-positive (Enterococcus faecalis) bacteria, and Candida albicans fungus. The shield toxicity was investigated on A549 cells.
Results: The highest X-ray attenuation percentage and the lowest HVL were obtained using the shield containing Bi2O3 nanoparticles. Although all shields displayed antimicrobial activity, the shield containing Bi2O3/PbO nanoparticles showed the most effective reduction in the colony counts. Both X-ray shields containing nano Bi2O3 and Bi2O3/PbO demonstrated high cytocompatibility on A549 cells at a concentration as high as 500 µg/ml. The shield with PbO nanoparticles was also cytocompatible at a concentration of 50 µg/ml.
Conclusion: The best X-ray attenuation performance is attributed to the silicone-based matrix with nano Bi2O3; however, the flexible shield with Bi2O3/PbO nanoparticles can be cost-effective and cytocompatible with the best antibacterial/antifungal properties.
期刊介绍:
The Journal of Biomedical Physics and Engineering (JBPE) is a bimonthly peer-reviewed English-language journal that publishes high-quality basic sciences and clinical research (experimental or theoretical) broadly concerned with the relationship of physics to medicine and engineering.