Isabelle Riße, Kerstin Filippi, Martin Wiemann, Bernd K Fleischmann, Michael Hesse
{"title":"Generation of an isogenic series of genome-edited hiPSC lines with the BAG3<sup>P209L</sup>-mutation for modeling myofibrillar myopathy 6.","authors":"Isabelle Riße, Kerstin Filippi, Martin Wiemann, Bernd K Fleischmann, Michael Hesse","doi":"10.1016/j.scr.2024.103641","DOIUrl":null,"url":null,"abstract":"<p><p>BAG3 contributes to the maintenance of proteostasis through chaperone-assisted selective autophagy. This function is impaired by a single amino acid exchange (P209L) in the protein, which causes myofibrillar myopathy-6 (MFM6). This disease manifests as severe skeletal muscle weakness, neuropathy and restrictive cardiomyopathy. We generated an isogenic series of heterozygous and homozygous genome-edited human induced pluripotent stem cell (hiPSC) lines with the BAG3<sup>P209L</sup>-mutation and its control. For quality control, we tested the pluripotency of these hiPSC lines and their ability to differentiate into the three germ layers. Generation of these cell lines enables the analysis of cellular pathomechanisms of BAG3<sup>P209L</sup>-related MFM6.</p>","PeriodicalId":21843,"journal":{"name":"Stem cell research","volume":"82 ","pages":"103641"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.scr.2024.103641","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
BAG3 contributes to the maintenance of proteostasis through chaperone-assisted selective autophagy. This function is impaired by a single amino acid exchange (P209L) in the protein, which causes myofibrillar myopathy-6 (MFM6). This disease manifests as severe skeletal muscle weakness, neuropathy and restrictive cardiomyopathy. We generated an isogenic series of heterozygous and homozygous genome-edited human induced pluripotent stem cell (hiPSC) lines with the BAG3P209L-mutation and its control. For quality control, we tested the pluripotency of these hiPSC lines and their ability to differentiate into the three germ layers. Generation of these cell lines enables the analysis of cellular pathomechanisms of BAG3P209L-related MFM6.
期刊介绍:
Stem Cell Research is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. Submissions to Stem Cell Research, may cover all aspects of stem cells, including embryonic stem cells, tissue-specific stem cells, cancer stem cells, developmental studies, stem cell genomes, and translational research. Stem Cell Research publishes 6 issues a year.