Trans-2-hexenal reduces postharvest mango stem-end rot by oxidative damage to Neofusicoccum parvum cell membranes.

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaoli Tan, Xiaobing Jiang, Xiumei Chen, Okwong Oketch Reymick, Chen Zhu, Nengguo Tao
{"title":"Trans-2-hexenal reduces postharvest mango stem-end rot by oxidative damage to Neofusicoccum parvum cell membranes.","authors":"Xiaoli Tan, Xiaobing Jiang, Xiumei Chen, Okwong Oketch Reymick, Chen Zhu, Nengguo Tao","doi":"10.1007/s11274-024-04235-0","DOIUrl":null,"url":null,"abstract":"<p><p>Neofusicoccum parvum is one of the most hazardous pathogens causing mango fruit decay. The present study utilized trans-2-hexenal (TH), a typical antifungal component of plant essential oils (EOs), to control N. parvum both in vivo and in vitro, and attempted to explore the mechanisms involved. The findings showed that at concentrations greater than 0.4 µL/mL, TH exhibited exceptional antifungal activity against N. parvum in vitro. TH application led to the disruption of the structural integrity of both cell walls and cell membranes, with a particular impact on the latter, as evidenced by the dramatically increased propidium iodide level, as well as reduced total lipids and ergosterol content. Further DCFH-DA staining experiments showed that TH induced mycelial reactive oxygen species (ROS) accumulation, which exacerbated cell membrane lipid peroxidation. For easier application of TH, we fabricated aerogel-loaded TH (ALTH) materials, which demonstrated excellent antifungal activity in vitro. Infestation studies on fruits demonstrated that ALTH mitigated mango stem-end rot in a dose-dependent fashion, with a concentration of 40 µL/L showing efficacy comparable to the conventional fungicide prochloraz, while maintaining fruit quality. In light of these results, TH works by inducing ROS buildup and oxidative damage to the cell membrane of N. parvum, and is a particularly promising preservative for preventing postharvest infections in mangoes.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 1","pages":"17"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04235-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neofusicoccum parvum is one of the most hazardous pathogens causing mango fruit decay. The present study utilized trans-2-hexenal (TH), a typical antifungal component of plant essential oils (EOs), to control N. parvum both in vivo and in vitro, and attempted to explore the mechanisms involved. The findings showed that at concentrations greater than 0.4 µL/mL, TH exhibited exceptional antifungal activity against N. parvum in vitro. TH application led to the disruption of the structural integrity of both cell walls and cell membranes, with a particular impact on the latter, as evidenced by the dramatically increased propidium iodide level, as well as reduced total lipids and ergosterol content. Further DCFH-DA staining experiments showed that TH induced mycelial reactive oxygen species (ROS) accumulation, which exacerbated cell membrane lipid peroxidation. For easier application of TH, we fabricated aerogel-loaded TH (ALTH) materials, which demonstrated excellent antifungal activity in vitro. Infestation studies on fruits demonstrated that ALTH mitigated mango stem-end rot in a dose-dependent fashion, with a concentration of 40 µL/L showing efficacy comparable to the conventional fungicide prochloraz, while maintaining fruit quality. In light of these results, TH works by inducing ROS buildup and oxidative damage to the cell membrane of N. parvum, and is a particularly promising preservative for preventing postharvest infections in mangoes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信