Mahmoud Ragab, Sami Saeed Binyamin, Wajdi Alghamdi, Turki Althaqafi, Fatmah Yousef Assiri, Mohammed Khaled Al-Hanawi, Abdullah Al-Malaise Al-Ghamdi
{"title":"Leveraging fuzzy embedded wavelet neural network with multi-criteria decision-making approach for coronary artery disease prediction using biomedical data.","authors":"Mahmoud Ragab, Sami Saeed Binyamin, Wajdi Alghamdi, Turki Althaqafi, Fatmah Yousef Assiri, Mohammed Khaled Al-Hanawi, Abdullah Al-Malaise Al-Ghamdi","doi":"10.1038/s41598-024-82019-0","DOIUrl":null,"url":null,"abstract":"<p><p>Coronary artery disease (CAD) is the main cause of death. It is a complex heart disease that is linked with many risk factors and a variety of symptoms. In the past few years, CAD has experienced a remarkable growth. Prompt risk prediction of CAD would be capable of decreasing the death rate by permitting timely and targeted treatments. Angiography is the most precise CAD diagnosis technique; however, it has several side effects and is expensive. Multi-criteria decision-making approaches can well perceive CAD by analysing main clinical indicators like ChestPain type, ST_Slope, and HeartDisease presence. By assessing and evaluating these factors, the model improves diagnostic accuracy and aids informed clinical decisions for quick CAD detection. Mainly machine learning (ML) and deep learning (DL) use plentiful models and algorithms, which are commonly employed and very useful in exactly detecting the CAD within a short time. Current studies have employed numerous features in gathering data from patients while using dissimilar ML and DL models to attain results with high accuracy and lesser side effects and costs. This study presents a Leveraging Fuzzy Wavelet Neural Network with Decision Making Approach for Coronary Artery Disease Prediction (LFWNNDMA-CADP) technique. The presented LFWNNDMA-CADP technique focuses on the multi-criteria decision-making model for predicting CAD using biomedical data. In the LFWNNDMA-CADP method, the data pre-processing stage utilizes Z-score normalization to convert an input data into a uniform format. Furthermore, the improved ant colony optimization (IACO) method is used for electing an optimum sub-set of features. Furthermore, the classification of CAD is accomplished by utilizing the fuzzy wavelet neural network (FWNN) technique. Finally, the hyperparameter tuning of the FWNN model is accomplished by employing the hybrid crayfish optimization algorithm with the self-adaptive differential evolution (COASaDE) technique. The simulation outcomes of the LFWNNDMA-CADP approach are investigated under a benchmark database. The experimental validation of the LFWNNDMA-CADP approach portrayed a superior accuracy value of 99.49% over existing techniques.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"31087"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82019-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Coronary artery disease (CAD) is the main cause of death. It is a complex heart disease that is linked with many risk factors and a variety of symptoms. In the past few years, CAD has experienced a remarkable growth. Prompt risk prediction of CAD would be capable of decreasing the death rate by permitting timely and targeted treatments. Angiography is the most precise CAD diagnosis technique; however, it has several side effects and is expensive. Multi-criteria decision-making approaches can well perceive CAD by analysing main clinical indicators like ChestPain type, ST_Slope, and HeartDisease presence. By assessing and evaluating these factors, the model improves diagnostic accuracy and aids informed clinical decisions for quick CAD detection. Mainly machine learning (ML) and deep learning (DL) use plentiful models and algorithms, which are commonly employed and very useful in exactly detecting the CAD within a short time. Current studies have employed numerous features in gathering data from patients while using dissimilar ML and DL models to attain results with high accuracy and lesser side effects and costs. This study presents a Leveraging Fuzzy Wavelet Neural Network with Decision Making Approach for Coronary Artery Disease Prediction (LFWNNDMA-CADP) technique. The presented LFWNNDMA-CADP technique focuses on the multi-criteria decision-making model for predicting CAD using biomedical data. In the LFWNNDMA-CADP method, the data pre-processing stage utilizes Z-score normalization to convert an input data into a uniform format. Furthermore, the improved ant colony optimization (IACO) method is used for electing an optimum sub-set of features. Furthermore, the classification of CAD is accomplished by utilizing the fuzzy wavelet neural network (FWNN) technique. Finally, the hyperparameter tuning of the FWNN model is accomplished by employing the hybrid crayfish optimization algorithm with the self-adaptive differential evolution (COASaDE) technique. The simulation outcomes of the LFWNNDMA-CADP approach are investigated under a benchmark database. The experimental validation of the LFWNNDMA-CADP approach portrayed a superior accuracy value of 99.49% over existing techniques.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.