{"title":"Experimental and numerical study on the mechanical properties of F type socket joints for rectangular pipe jacking with steel screw connection.","authors":"Youjun Xu, Chengjun Xu, Chao Zhang, Xu Zhang","doi":"10.1038/s41598-024-81974-y","DOIUrl":null,"url":null,"abstract":"<p><p>To solve the problems of insufficient stiffness and poor integrity of traditional F-type socket joints, steel screw connections are set along the longitudinal direction between rectangular pipe jacking joints. However, the mechanical properties of F-type socket joints with steel screw connections have not been fully investigated, and the influence of the coefficient of subgrade reaction has not been considered. In this work, through model tests and numerical simulations of F-type socket joints with steel screws under different coefficients of subgrade reaction, the influence of steel screws on the deformation and damage characteristics of F-type socket joints is discussed, and the bending mechanical response of F-type socket joints under different coefficients of subgrade reaction is analyzed. Compared with traditional F-type socket joints, the use of steel screw connections can reduce the risk of steel ring warping and cross-sectional deformation of the joints and improve the stiffness and load-carrying capacity of the joints. However, the use of steel screw connections exacerbates damage to the chamfered parts of the jack joints. With an increase in the coefficient of subgrade reaction, the benefit of the steel screw on the joint stiffness gradually decreases. For every 0.5-fold increase in the coefficient of subgrade reaction, the effect of the steel screw on the joint bending load-carrying capacity of the joint is reduced by approximately 23%. The failure mode of joints containing steel screws is mainly the crushing of concrete in the compression zone, and the penetration cracks extend from the joint to the bottom of the pipe section. The higher the jacking force is, the higher the load-carrying capacity of the joint and the better the bending resistance.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30952"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680914/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-81974-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problems of insufficient stiffness and poor integrity of traditional F-type socket joints, steel screw connections are set along the longitudinal direction between rectangular pipe jacking joints. However, the mechanical properties of F-type socket joints with steel screw connections have not been fully investigated, and the influence of the coefficient of subgrade reaction has not been considered. In this work, through model tests and numerical simulations of F-type socket joints with steel screws under different coefficients of subgrade reaction, the influence of steel screws on the deformation and damage characteristics of F-type socket joints is discussed, and the bending mechanical response of F-type socket joints under different coefficients of subgrade reaction is analyzed. Compared with traditional F-type socket joints, the use of steel screw connections can reduce the risk of steel ring warping and cross-sectional deformation of the joints and improve the stiffness and load-carrying capacity of the joints. However, the use of steel screw connections exacerbates damage to the chamfered parts of the jack joints. With an increase in the coefficient of subgrade reaction, the benefit of the steel screw on the joint stiffness gradually decreases. For every 0.5-fold increase in the coefficient of subgrade reaction, the effect of the steel screw on the joint bending load-carrying capacity of the joint is reduced by approximately 23%. The failure mode of joints containing steel screws is mainly the crushing of concrete in the compression zone, and the penetration cracks extend from the joint to the bottom of the pipe section. The higher the jacking force is, the higher the load-carrying capacity of the joint and the better the bending resistance.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.