{"title":"[Microorganism-mediated arsenic reduction and its environmental effects].","authors":"Teng Mao, Guoliang Chen, Zhihui Qu","doi":"10.13345/j.cjb.240529","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic (As) is a common toxic pollution element. The microorganism-mediated transformation of arsenic forms is an important part in the biogeochemical cycle of As. In the various microbial metabolic processes involving As, the coupling reduction of As has a great impact on the environment and is a process that is easily overlooked. From the biogeochemical cycle of As, this review introduces the microorganism-mediated methane oxidation, anaerobic ammonium oxidation, and iron (Fe)-sulfur (S) oxidation coupled with As reduction. Organic matter, pH, and redox potential are the main factors affecting the coupling reduction. After the coupling reduction, the toxicity and migration of As are greatly enhanced, which may increase the risk of As pollution. Therefore, it is of great significance to clarify the influences of carbon, nitrogen, Fe, S and other elements on the coupling process and explore more microbial processes coupled with As reduction for the prevention and control of As pollution.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 12","pages":"4480-4492"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic (As) is a common toxic pollution element. The microorganism-mediated transformation of arsenic forms is an important part in the biogeochemical cycle of As. In the various microbial metabolic processes involving As, the coupling reduction of As has a great impact on the environment and is a process that is easily overlooked. From the biogeochemical cycle of As, this review introduces the microorganism-mediated methane oxidation, anaerobic ammonium oxidation, and iron (Fe)-sulfur (S) oxidation coupled with As reduction. Organic matter, pH, and redox potential are the main factors affecting the coupling reduction. After the coupling reduction, the toxicity and migration of As are greatly enhanced, which may increase the risk of As pollution. Therefore, it is of great significance to clarify the influences of carbon, nitrogen, Fe, S and other elements on the coupling process and explore more microbial processes coupled with As reduction for the prevention and control of As pollution.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.