Effect of imatinib on lipopolysaccharide‑induced acute lung injury and endothelial dysfunction through the P38 MAPK and NF-κB signaling pathways in vivo and in vitro.
Yaru Liu, Duanyang Li, Tianyi Zhang, Keruo Wang, Xue Liang, Xiaolong Zong, Hong Yang, Zhenyu Li
{"title":"Effect of imatinib on lipopolysaccharide‑induced acute lung injury and endothelial dysfunction through the P38 MAPK and NF-κB signaling pathways in vivo and in vitro.","authors":"Yaru Liu, Duanyang Li, Tianyi Zhang, Keruo Wang, Xue Liang, Xiaolong Zong, Hong Yang, Zhenyu Li","doi":"10.1016/j.resp.2024.104388","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The primary purpose of this study was to demonstrate the preventive effects of imatinib (IMA) on lipopolysaccharide (LPS)-induced inflammation in a mouse model of acute lung injury (ALI) and human umbilical vascular endothelial cells.</p><p><strong>Methods: </strong>LPS stimulation for 24 h induced ALI and cell inflammation. The pathological results of the lungs were evaluated using the wet/dry weight ratio, pulmonary vascular permeability measurements, and myeloperoxidase immunohistochemistry. The expression of pro-inflammatory mediators was analyzed using RT-PCR and enzyme-linked immunosorbent assay. Protein levels were analyzed using western blotting. The structure of cell junctions was detected using immunofluorescence.</p><p><strong>Results: </strong>IMA improved LPS-induced pulmonary pathological damage and reduced the lung wet/dry weight ratio and myeloperoxidase expression in the lung tissue. IMA decreased bronchoalveolar lavage fluid inflammatory cell count and the release of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and monocyte chemotactic protein 1 (MCP-1) in the blood. Pretreatment of human umbilical vascular endothelial cells with IMA significantly attenuated LPS-induced actin stress fiber formation and vascular endothelial-cadherin disruption. In addition, IMA downregulated the mRNA abundances of vascular cell adhesion molecule 1, intercellular adhesion molecule 1, IL-1β, IL-6, and tumor necrosis factor-α(TNF-α) expression. The phosphorylation of p65, nuclear factor-kappa B inhibitor alpha (IκBα), p38, extracellular signal-regulated kinase, and Jun N-terminal kinase induced by LPS were attenuated after IMA treatment in vivo and in vitro.</p><p><strong>Conclusions: </strong>IMA modulates the nuclear factor-kappa B and mitogen-activated protein kinase signaling pathways and the production of pro-inflammatory cytokines to prevent cellular damage due to LPS infection. These results indicate that IMA may be a potential modulator of LPS-induced ALI.</p>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":" ","pages":"104388"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.resp.2024.104388","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The primary purpose of this study was to demonstrate the preventive effects of imatinib (IMA) on lipopolysaccharide (LPS)-induced inflammation in a mouse model of acute lung injury (ALI) and human umbilical vascular endothelial cells.
Methods: LPS stimulation for 24 h induced ALI and cell inflammation. The pathological results of the lungs were evaluated using the wet/dry weight ratio, pulmonary vascular permeability measurements, and myeloperoxidase immunohistochemistry. The expression of pro-inflammatory mediators was analyzed using RT-PCR and enzyme-linked immunosorbent assay. Protein levels were analyzed using western blotting. The structure of cell junctions was detected using immunofluorescence.
Results: IMA improved LPS-induced pulmonary pathological damage and reduced the lung wet/dry weight ratio and myeloperoxidase expression in the lung tissue. IMA decreased bronchoalveolar lavage fluid inflammatory cell count and the release of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and monocyte chemotactic protein 1 (MCP-1) in the blood. Pretreatment of human umbilical vascular endothelial cells with IMA significantly attenuated LPS-induced actin stress fiber formation and vascular endothelial-cadherin disruption. In addition, IMA downregulated the mRNA abundances of vascular cell adhesion molecule 1, intercellular adhesion molecule 1, IL-1β, IL-6, and tumor necrosis factor-α(TNF-α) expression. The phosphorylation of p65, nuclear factor-kappa B inhibitor alpha (IκBα), p38, extracellular signal-regulated kinase, and Jun N-terminal kinase induced by LPS were attenuated after IMA treatment in vivo and in vitro.
Conclusions: IMA modulates the nuclear factor-kappa B and mitogen-activated protein kinase signaling pathways and the production of pro-inflammatory cytokines to prevent cellular damage due to LPS infection. These results indicate that IMA may be a potential modulator of LPS-induced ALI.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.