The influence of Kitchon-RCAA on biomechanics of maxillary tissues based on indirect action: A finite element analysis.

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Jingang Jiang, Shuojian Zhai, Liang Yao, Yongde Zhang, Shan Zhou
{"title":"The influence of Kitchon-RCAA on biomechanics of maxillary tissues based on indirect action: A finite element analysis.","authors":"Jingang Jiang, Shuojian Zhai, Liang Yao, Yongde Zhang, Shan Zhou","doi":"10.1177/09544119241305468","DOIUrl":null,"url":null,"abstract":"<p><p>This paper creates 3D models of Kitchon Root Controlled Auxiliary Archwire (Kitchon-RCAA) with different material properties and assembles them onto the main archwire equipped with brackets. By setting different loading methods and conducting Finite Element Analysis (FEA), the range of Orthodontic Torque/Support Force (OT/SF) values can be obtained. From the obtained values, it can be seen that changes in material properties have a significant impact on the mechanical properties of Kitchon-RCAA. When the properties of the Kitchon-RCAA material change two or more times, the mechanical values generated by Kitchon-RCAA cannot be directly added from two or more separate changes in the properties of the material. Therefore, it is necessary to simulate the model after each parameter change to obtain new results. And then the maxillary bio-model is reconstructed in reverse based on Cone Beam Computerized Tomography (CBCT) images. The biomechanical data equivalent to the mechanical mechanics generated by the root control assisted archwire is also added to the corresponding tooth positions, making indirect orthodontic behavior of Kitchon-RCAA on teeth possible. From the obtained results, it can be seen that the von Mises stress and total deformation magnitude for both normal teeth and corresponding Periodontal Ligament (PDL) position show a stable trend, while the Right Cuspid (R-C) and corresponding PDL with malformed root have a large stress concentration and may have a mold penetration problem. Overall, this paper not only analyses the mechanical behavior of the Kitchon-RCAA, this article not only analyzed the mechanical behavior of Kitchon-RCAA, but also its effect on the indirect biomechanical behavior of the teeth and PDL. And in combination with simulation result nephograms, it also enables predictability and visualization of orthodontic results. This helps dentists to provide safer and more reliable individualized orthodontic treatment plans for patients.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"9544119241305468"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119241305468","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper creates 3D models of Kitchon Root Controlled Auxiliary Archwire (Kitchon-RCAA) with different material properties and assembles them onto the main archwire equipped with brackets. By setting different loading methods and conducting Finite Element Analysis (FEA), the range of Orthodontic Torque/Support Force (OT/SF) values can be obtained. From the obtained values, it can be seen that changes in material properties have a significant impact on the mechanical properties of Kitchon-RCAA. When the properties of the Kitchon-RCAA material change two or more times, the mechanical values generated by Kitchon-RCAA cannot be directly added from two or more separate changes in the properties of the material. Therefore, it is necessary to simulate the model after each parameter change to obtain new results. And then the maxillary bio-model is reconstructed in reverse based on Cone Beam Computerized Tomography (CBCT) images. The biomechanical data equivalent to the mechanical mechanics generated by the root control assisted archwire is also added to the corresponding tooth positions, making indirect orthodontic behavior of Kitchon-RCAA on teeth possible. From the obtained results, it can be seen that the von Mises stress and total deformation magnitude for both normal teeth and corresponding Periodontal Ligament (PDL) position show a stable trend, while the Right Cuspid (R-C) and corresponding PDL with malformed root have a large stress concentration and may have a mold penetration problem. Overall, this paper not only analyses the mechanical behavior of the Kitchon-RCAA, this article not only analyzed the mechanical behavior of Kitchon-RCAA, but also its effect on the indirect biomechanical behavior of the teeth and PDL. And in combination with simulation result nephograms, it also enables predictability and visualization of orthodontic results. This helps dentists to provide safer and more reliable individualized orthodontic treatment plans for patients.

基于间接作用的kitchen - rcaa对上颌组织生物力学影响的有限元分析。
本文建立了具有不同材料特性的kiton Root Controlled Auxiliary Archwire (kitchen - rcaa)的三维模型,并将其装配到带有支架的主Archwire上。通过设置不同的加载方式,并进行有限元分析(Finite Element Analysis, FEA),可以得到正畸扭矩/支撑力(Orthodontic Torque/Support Force, OT/SF)的取值范围。从得到的数值可以看出,材料性能的变化对kitchen - rcaa的力学性能有显著的影响。当kitchen - rcaa材料的性质发生两次或两次以上的变化时,kitchen - rcaa产生的力学值不能由材料性质的两次或两次以上的单独变化直接相加。因此,有必要在每次参数变化后对模型进行模拟,以获得新的结果。然后基于锥形束ct (Cone Beam computed Tomography, CBCT)图像进行上颌生物模型的反向重建。与牙根控制辅助弓丝产生的力学力学等效的生物力学数据也被添加到相应的牙齿位置,使得kitchen - rcaa在牙齿上的间接正畸行为成为可能。从得到的结果可以看出,正常牙和相应的牙周韧带(PDL)位置的von Mises应力和总变形量呈稳定趋势,而根部畸形的右尖牙(R-C)和相应的PDL应力集中较大,可能存在渗模问题。综上所述,本文不仅分析了kitchen - rcaa的力学行为,还分析了kitchen - rcaa的力学行为,以及其对牙齿和PDL间接生物力学行为的影响。结合模拟结果云图,还可以实现正畸结果的可预测性和可视化。这有助于牙医为患者提供更安全、更可靠的个性化正畸治疗计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信