Chong Wang , Anqi Lin , Yankong Zhou , Zheng Liu , Peng Bai , Yuxuan Zhu , Junmiao Fan , Xiaoyi Bi , Huiyun Kuang , Hongli Lian , Pengbo Xu
{"title":"Mutation in FvPAL2 leads to light red strawberry fruits and yellow-green petioles","authors":"Chong Wang , Anqi Lin , Yankong Zhou , Zheng Liu , Peng Bai , Yuxuan Zhu , Junmiao Fan , Xiaoyi Bi , Huiyun Kuang , Hongli Lian , Pengbo Xu","doi":"10.1016/j.plantsci.2024.112370","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, light red or white strawberries have attracted much attention because of their unusual color, however, the mechanism of strawberry color formation, especially light red strawberry color, is not well understood. By EMS mutagenesis of woodland strawberry (<em>Fragaria vesca</em>), we identified two mutants, <em>rg40</em> and <em>rg120</em>, with light red fruit and yellow-green petiole, and allelic hybridization and BSA mixed-pool sequencing revealed that the phenotype was caused by mutation in the FvPAL2 protein in the anthocyanin synthesis pathway. Enzyme activity experiments showed that the mutant FvPAL2 protein barely catalyzed the substrate conversion normally, thus blocking anthocyanin synthesis, which in turn led to a decrease in anthocyanin accumulation in fruits and petioles. Analysis of the active pockets of the wild-type and mutant FvPAL2 proteins revealed that the mutant FvPAL2 could not bind to the substrate properly. The specific transcription factors FvMYB10 and FvMYB10L were further found to bind and activate the expression of <em>FvPAL1</em> and <em>FvPAL2</em> in both fruit and petiole. The discovery of the key site of FvPAL2 protein activity provides a clear modification target for the breeding of light red strawberry varieties, which has important application value.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"352 ","pages":"Article 112370"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945224003972","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, light red or white strawberries have attracted much attention because of their unusual color, however, the mechanism of strawberry color formation, especially light red strawberry color, is not well understood. By EMS mutagenesis of woodland strawberry (Fragaria vesca), we identified two mutants, rg40 and rg120, with light red fruit and yellow-green petiole, and allelic hybridization and BSA mixed-pool sequencing revealed that the phenotype was caused by mutation in the FvPAL2 protein in the anthocyanin synthesis pathway. Enzyme activity experiments showed that the mutant FvPAL2 protein barely catalyzed the substrate conversion normally, thus blocking anthocyanin synthesis, which in turn led to a decrease in anthocyanin accumulation in fruits and petioles. Analysis of the active pockets of the wild-type and mutant FvPAL2 proteins revealed that the mutant FvPAL2 could not bind to the substrate properly. The specific transcription factors FvMYB10 and FvMYB10L were further found to bind and activate the expression of FvPAL1 and FvPAL2 in both fruit and petiole. The discovery of the key site of FvPAL2 protein activity provides a clear modification target for the breeding of light red strawberry varieties, which has important application value.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.