Zahra Ahmed, Alexander Zargaran, David Zargaran, Sara Sousi, Keiron Hakimnia, Sevasti Panagiota Glynou, Julie Davies, Stephen Hamilton, Afshin Mosahebi
{"title":"Sustainability in Reconstructive Breast Surgery: An Eco-audit of the Deep Inferior Epigastric Perforator Flap Pathway.","authors":"Zahra Ahmed, Alexander Zargaran, David Zargaran, Sara Sousi, Keiron Hakimnia, Sevasti Panagiota Glynou, Julie Davies, Stephen Hamilton, Afshin Mosahebi","doi":"10.1097/GOX.0000000000006374","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The deep inferior epigastric perforator (DIEP) flap provides an effective and popular means for autologous breast reconstruction. However, with the complexity of the pathway, the environmental impact of the pathway has yet to be evaluated.</p><p><strong>Methods: </strong>A retrospective analysis of 42 unilateral DIEPs at a single reconstructive center was performed. Process mapping and life-cycle analyses were performed for equipment, staff, patients, and land. A bottom-up approach was adopted to calculate carbon dioxide equivalent estimates for the initial consultation, preoperative, intraoperative, and immediate postoperative periods.</p><p><strong>Results: </strong>This study estimated the carbon footprint of a patient undergoing DIEP flap surgery to be approximately 233.96 kg CO<sub>2</sub>eq. Induction, maintenance, and running of anesthesia had the highest overall contribution to the carbon footprint (158.17 kg CO<sub>2</sub>eq, 67.60% overall). Patient and staff travel contributed more than 15% overall carbon emissions in this study. The impact of sterilization was less than half of that from waste management (0.81 versus 1.81 kg CO<sub>2</sub>eq, respectively). Waste management alone contributed 4.21 kg CO<sub>2</sub>eq of the overall carbon emissions, the majority of which was accountable to the incineration of 14.75 kg of noninfectious offensive waste.</p><p><strong>Conclusions: </strong>This study estimates the carbon footprint of the DIEP pathway. Strategies to mitigate the impact of carbon emissions including usage of reusable vs single-use equipment, virtual consultations, standardization of equipment packs, and optimizing waste disposal were suggested areas for improvement. Data from manufacturers on life-cycle assessments were limited, and further work is needed to fully understand and optimize the impact of DIEP surgery on the environment.</p>","PeriodicalId":20149,"journal":{"name":"Plastic and Reconstructive Surgery Global Open","volume":"12 12","pages":"e6374"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastic and Reconstructive Surgery Global Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/GOX.0000000000006374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The deep inferior epigastric perforator (DIEP) flap provides an effective and popular means for autologous breast reconstruction. However, with the complexity of the pathway, the environmental impact of the pathway has yet to be evaluated.
Methods: A retrospective analysis of 42 unilateral DIEPs at a single reconstructive center was performed. Process mapping and life-cycle analyses were performed for equipment, staff, patients, and land. A bottom-up approach was adopted to calculate carbon dioxide equivalent estimates for the initial consultation, preoperative, intraoperative, and immediate postoperative periods.
Results: This study estimated the carbon footprint of a patient undergoing DIEP flap surgery to be approximately 233.96 kg CO2eq. Induction, maintenance, and running of anesthesia had the highest overall contribution to the carbon footprint (158.17 kg CO2eq, 67.60% overall). Patient and staff travel contributed more than 15% overall carbon emissions in this study. The impact of sterilization was less than half of that from waste management (0.81 versus 1.81 kg CO2eq, respectively). Waste management alone contributed 4.21 kg CO2eq of the overall carbon emissions, the majority of which was accountable to the incineration of 14.75 kg of noninfectious offensive waste.
Conclusions: This study estimates the carbon footprint of the DIEP pathway. Strategies to mitigate the impact of carbon emissions including usage of reusable vs single-use equipment, virtual consultations, standardization of equipment packs, and optimizing waste disposal were suggested areas for improvement. Data from manufacturers on life-cycle assessments were limited, and further work is needed to fully understand and optimize the impact of DIEP surgery on the environment.
期刊介绍:
Plastic and Reconstructive Surgery—Global Open is an open access, peer reviewed, international journal focusing on global plastic and reconstructive surgery.Plastic and Reconstructive Surgery—Global Open publishes on all areas of plastic and reconstructive surgery, including basic science/experimental studies pertinent to the field and also clinical articles on such topics as: breast reconstruction, head and neck surgery, pediatric and craniofacial surgery, hand and microsurgery, wound healing, and cosmetic and aesthetic surgery. Clinical studies, experimental articles, ideas and innovations, and techniques and case reports are all welcome article types. Manuscript submission is open to all surgeons, researchers, and other health care providers world-wide who wish to communicate their research results on topics related to plastic and reconstructive surgery. Furthermore, Plastic and Reconstructive Surgery—Global Open, a complimentary journal to Plastic and Reconstructive Surgery, provides an open access venue for the publication of those research studies sponsored by private and public funding agencies that require open access publication of study results. Its mission is to disseminate high quality, peer reviewed research in plastic and reconstructive surgery to the widest possible global audience, through an open access platform. As an open access journal, Plastic and Reconstructive Surgery—Global Open offers its content for free to any viewer. Authors of articles retain their copyright to the materials published. Additionally, Plastic and Reconstructive Surgery—Global Open provides rapid review and publication of accepted papers.